Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 106(1): 23-40, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368770

RESUMO

Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.


Assuntos
Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Camellia/genética , Camellia/metabolismo , Camellia/fisiologia , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/fisiologia , Folhas de Planta/genética , Biologia de Sistemas/métodos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
2.
Appl Microbiol Biotechnol ; 104(2): 725-739, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31822980

RESUMO

The recent use of photosynthetic organisms such as Chlamydomonas reinhardtii in biomedical applications has demonstrated their potential for the treatment of acute and chronic tissue hypoxia. Moreover, transgenic microalgae have been suggested as an alternative in situ drug delivery system. In this study, we set out to identify the best available combination of strains and expression vectors to establish a robust platform for the expression of human pro-angiogenic growth factors, i.e., hVEGF-165, hPDGF-B, and hSDF-1, in biomedical settings. As a case study, combinations of two expression vectors (pOpt and pBC1) and two C. reinhardtii strains (UVM4 and UVM11) were compared with respect to hVEGF-165 transgene expression by determination of steady-state levels of transgenic transcripts and immunological detection of recombinant proteins produced and secreted by the generated strains. The results revealed the combination of the UVM11 strain with the pBC1 vector to be the most efficient one for high-level hVEGF-165 production. To assess the robustness of this finding, the selected combination was used to create hPDGF-B and hSDF-1 transgenic strains for optimized recombinant protein expression. Furthermore, biological activity and functionality of algal-produced recombinant pro-angiogenic growth factors were assessed by receptor phosphorylation and in vitro angiogenesis assays. The results obtained revealed a potentiating effect in the combinatorial application of transgenic strains expressing either of the three growth factors on endothelial cell tube formation ability, and thus support the idea of using transgenic algae expressing pro-angiogenic growth factors in wound healing approaches.


Assuntos
Quimiocina CXCL12/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Indutores da Angiogênese , Quimiocina CXCL12/genética , Células Endoteliais/efeitos dos fármacos , Expressão Gênica , Perfilação da Expressão Gênica , Vetores Genéticos , Proteoma/análise , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Recombinantes/genética , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/genética
3.
Acta Biomater ; 81: 184-194, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287280

RESUMO

Surgical sutures represent the gold standard for wound closure, however, their main purpose is still limited to a mechanical function rather than playing a bioactive role. Since oxygen and pro-regenerative growth factors have been broadly described as key players for the healing process, in this study we evaluated the feasibility of generating photosynthetic sutures that, in addition to mechanical fixation, could locally and stably release oxygen and recombinant human growth factors (VEGF, PDGF-BB, or SDF-1α) at the wound site. Here, photosynthetic genetically modified microalgae were seeded in commercially available sutures and their distribution and proliferation capacity was evaluated. Additionally, the mechanical properties of seeded sutures were compared to unseeded controls that showed no significant differences. Oxygen production, as well as recombinant growth factor release was quantified in vitro over time, and confirmed that photosynthetic sutures are indeed a feasible approach for the local delivery of bioactive molecules. Finally, photosynthetic sutures were tested in order to evaluate their resistance to mechanical stress and freezing. Significant stability was observed in both conditions, and the feasibility of their use in the clinical practice was therefore confirmed. Our results suggest that photosynthetic gene therapy could be used to produce a new generation of bioactive sutures with improved healing capacities. STATEMENT OF SIGNIFICANCE: Disruption of the vascular network is intrinsic to trauma and surgery, and consequently, wound healing is characterized by diminished levels of blood perfusion. Among all the blood components, oxygen and pro-regenerative growth factors have been broadly described as key players for the healing process. Therefore, in this study we evaluated the feasibility of generating photosynthetic sutures that, in addition to mechanical fixation, could locally and stably release oxygen and recombinant human growth factors at the wound site. This novel concept has never been explored before for this type of material and represents the first attempt to create a new generation of bioactive sutures with improved regenerative capabilities.


Assuntos
Portadores de Fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Oxigênio , Suturas , Ferimentos e Lesões , Células 3T3 , Animais , Parede Celular/química , Chlamydomonas reinhardtii/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Microalgas/química , Oxigênio/química , Oxigênio/farmacocinética , Oxigênio/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
4.
Biomaterials ; 75: 25-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474040

RESUMO

The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.


Assuntos
Processos Autotróficos , Terapia Genética , Fotossíntese , Regeneração , Engenharia Tecidual/métodos , Animais , Processos Autotróficos/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Chlamydomonas/efeitos dos fármacos , Chlamydomonas/fisiologia , Derme/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Implantes Experimentais , Inflamação/patologia , Camundongos , Microalgas/efeitos dos fármacos , Microalgas/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Oxigênio/farmacologia , Fotossíntese/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra
5.
Genome Biol Evol ; 5(12): 2540-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24336424

RESUMO

Plastids sequestered by sacoglossan sea slugs have long been a puzzle. Some sacoglossans feed on siphonaceous algae and can retain the plastids in the cytosol of their digestive gland cells. There, the stolen plastids (kleptoplasts) can remain photosynthetically active in some cases for months. Kleptoplast longevity itself challenges current paradigms concerning photosystem turnover, because kleptoplast photosystems remain active in the absence of nuclear algal genes. In higher plants, nuclear genes are essential for plastid maintenance, in particular, for the constant repair of the D1 protein of photosystem II. Lateral gene transfer was long suspected to underpin slug kleptoplast longevity, but recent transcriptomic and genomic analyses show that no algal nuclear genes are expressed from the slug nucleus. Kleptoplast genomes themselves, however, appear expressed in the sequestered state. Here we present sequence data for the chloroplast genome of Acetabularia acetabulum, the food source of the sacoglossan Elysia timida, which can maintain Acetabularia kleptoplasts in an active state for months. The data reveal what might be the key to sacoglossan kleptoplast longevity: plastids that remain photosynthetically active within slugs for periods of months share the property of encoding ftsH, a D1 quality control protease that is essential for photosystem II repair. In land plants, ftsH is always nuclear encoded, it was transferred to the nucleus from the plastid genome when Charophyta and Embryophyta split. A replenishable supply of ftsH could, in principle, rescue kleptoplasts from D1 photodamage, thereby influencing plastid longevity in sacoglossan slugs.


Assuntos
Acetabularia/genética , Carboxipeptidases/fisiologia , Gastrópodes/fisiologia , Proteínas de Plantas/fisiologia , Plastídeos/genética , Pró-Proteína Convertases/fisiologia , Proteínas de Algas , Animais , Carboxipeptidases/genética , Cloroplastos/genética , Genomas de Plastídeos , Proteínas de Plantas/genética , Pró-Proteína Convertases/genética
6.
Annu Rev Plant Biol ; 64: 609-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451783

RESUMO

Photosystem II (PSII) is an integral-membrane, multisubunit complex that initiates electron flow in oxygenic photosynthesis. The biogenesis of this complex machine involves the concerted assembly of at least 20 different polypeptides as well as the incorporation of a variety of inorganic and organic cofactors. Many factors have recently been identified that constitute an integrative network mediating the stepwise assembly of PSII components. One recurring theme is the subcellular organization of the assembly process in specialized membranes that form distinct biogenesis centers. Here, we review our current knowledge of the molecular components and events involved in PSII assembly and their high degree of evolutionary conservation.


Assuntos
Cianobactérias/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Células Vegetais/metabolismo , Plantas/genética , Cianobactérias/citologia , Cianobactérias/genética , Evolução Molecular , Plantas/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(32): 13290-5, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666611

RESUMO

The cytosolic RNA-binding protein NAB1 represses translation of LHCII (light-harvesting complex of photosystem II) encoding mRNAs by sequestration into translationally silent mRNP complexes in the green alga Chlamydomonas reinhardtii. NAB1 contains 2 cysteine residues, Cys-181 and Cys-226, within its C-terminal RRM motif. Modification of these cysteines either by oxidation or by alkylation in vitro was accompanied by a decrease in RNA-binding affinity for the target mRNA sequence. To confirm the relevance of reversible NAB1 cysteine oxidation for the regulation of its activity in vivo, we replaced both cysteines with serines. All examined cysteine single and double mutants exhibited a reduced antenna at PSII caused by a perturbed NAB1 deactivation mechanism, with double mutations and Cys-226 single mutations causing a stronger and more distinctive phenotype compared with the Cys-181 mutation. Our data indicated that the responsible redox control mechanism is mediated by modification of single cysteines. Polysome analyses and RNA co-immunoprecipitation experiments demonstrated the interconnection of the NAB1 thiol state and its activity as a translation repressor in vivo. NAB1 is fully active in its dithiol state and is reversibly deactivated by modification of its cysteines. In summary, this work is an example that cytosolic translation of nucleus encoded photosynthetic genes is regulated via a reversible cysteine-based redox switch in a RNA-binding translation repressor protein.


Assuntos
Proteínas de Algas/metabolismo , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cisteína/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Proteínas de Algas/química , Substituição de Aminoácidos/efeitos da radiação , Animais , Núcleo Celular/efeitos da radiação , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Luz , Mutação/genética , Estresse Oxidativo/efeitos da radiação , Fenótipo , Complexo de Proteína do Fotossistema II/genética , Processos Fototróficos/efeitos da radiação , Ligação Proteica/efeitos da radiação , Biossíntese de Proteínas/efeitos da radiação , Estabilidade Proteica/efeitos da radiação , Estrutura Terciária de Proteína , RNA de Algas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Serina/genética , Relação Estrutura-Atividade
8.
J Biol Chem ; 283(33): 22390-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18550538

RESUMO

The role of the slr2034 (ycf48) gene product in the assembly and repair of photosystem II (PSII) has been studied in the cyanobacterium Synechocystis PCC 6803. YCF48 (HCF136) is involved in the assembly of Arabidopsis thaliana PSII reaction center (RC) complexes but its mode of action is unclear. We show here that YCF48 is a component of two cyanobacterial PSII RC-like complexes in vivo and is absent in larger PSII core complexes. Interruption of ycf48 slowed the formation of PSII complexes in wild type, as judged from pulse-labeling experiments, and caused a decrease in the final level of PSII core complexes in wild type and a marked reduction in the levels of PSII assembly complexes in strains lacking either CP43 or CP47. Absence of YCF48 also led to a dramatic decrease in the levels of the COOH-terminal precursor (pD1) and the partially processed form, iD1, in a variety of PSII mutants and only low levels of unassembled mature D1 were observed. Yeast two-hybrid analyses using the split ubiquitin system showed an interaction of YCF48 with unassembled pD1 and, to a lesser extent, unassembled iD1, but not with unassembled mature D1 or D2. Overall our results indicate a role for YCF48 in the stabilization of newly synthesized pD1 and in its subsequent binding to a D2-cytochrome b559 pre-complex, also identified in this study. Besides a role in assembly, we show for the first time that YCF48 also functions in the selective replacement of photodamaged D1 during PSII repair.


Assuntos
Cianobactérias/fisiologia , Proteínas de Membrana/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Synechocystis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Cisteína/metabolismo , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/isolamento & purificação , Proteínas de Membrana/genética , Metionina/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/isolamento & purificação , Polarografia , Reação em Cadeia da Polimerase , Radioisótopos de Enxofre
9.
Plant J ; 43(5): 636-48, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16115062

RESUMO

The chloroplast tscA gene from Chlamydomonas reinhardtii encodes a co-factor RNA that is involved in trans-splicing of exons 1 and 2 of the psaA mRNA encoding a core polypeptide of photosystem I. Here we provide molecular and genetic characterization of the trans-splicing mutant TR72, which is defective in the 3'-end processing of the tscA RNA and consequently defective in splicing exons 1 and 2 of the psaA mRNA. Using genomic complementation, two adjacent nuclear genes were identified, Rat1 and Rat2, that are able to restore the photosynthetic growth of mutant TR72. Restoration of the photosynthesis phenotype, however, was successful only with a DNA fragment containing both genes, while separate use of the two genes did not rescue the wild-type phenotype. This was further confirmed by using a set of 10 gene derivatives in complementation tests. The deduced amino acid sequence of Rat1 shows significant sequence homology to the conserved NAD+-binding domain of poly(ADP-ribose) polymerases of eukaryotic organisms. However, mutagenesis of conserved residues in this putative NAD+-binding domain did not reveal any effect on restoration efficiency. Immunodetection analyses with enriched fractions of chloroplast proteins indicated that Rat1 is associated with chloroplast membranes. Using the yeast three-hybrid system, we were able to demonstrate the specific binding of tscA RNA by the Rat1 polypeptide. We propose that the two nuclear factors Rat1 and Rat2 are involved in processing of chloroplast tscA RNA and in subsequent splicing of psaA exons 1 and 2.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Proteínas de Protozoários/genética , Trans-Splicing/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/fisiologia , Regulação da Expressão Gênica , Genótipo , Dados de Sequência Molecular , Mutação , Fenótipo , Fotossíntese/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos
10.
Appl Microbiol Biotechnol ; 69(4): 440-7, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15988575

RESUMO

Each photosynthetic complex within the thylakoid membrane consists of several different subunits. During formation of these complexes, numerous regulatory factors are required for the coordinated transport and assembly of the subunits. Interactions between transport/assembly factors and their specific polypeptides occur in a membraneous environment and are usually transient and short-lived. Thus, a detailed analysis of the underlying molecular mechanisms by biochemical techniques is often difficult to perform. Here, we report on the suitability of a genetic system, i.e. the yeast split-ubiquitin system, to investigate protein-protein interactions of thylakoid membrane proteins. The data confirm the previously established binding of the cpSec-translocase subunits, cpSecY and cpSecE, and the interaction of the cpSec-translocase from Arabidopsis thaliana with Alb3, a factor required for the insertion of the light-harvesting chlorophyll-binding proteins into the thylakoid membrane. In addition, the proposed interaction between D1, the reaction center protein of photosystem II and the soluble periplasmic PratA factor from Synechocystis sp. PCC 6803 was verified. A more comprehensive analysis of Alb3-interacting proteins revealed that Alb3 is able to form dimers or oligomers. Interestingly, Alb3 was also shown to bind to the PSII proteins D1, D2 and CP43, to the PSI reaction center protein PSI-A and the ATP synthase subunit CF(0)III, suggesting an important role of Alb3 in the assembly of photosynthetic thylakoid membrane complexes.


Assuntos
Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos , Proteínas de Membrana/química , Proteínas Periplásmicas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Canais de Translocação SEC , Synechocystis/metabolismo , Tilacoides , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA