Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 20(10): 1481-1488, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852383

RESUMO

Chromosomal rearrangements often result in active regulatory regions juxtaposed upstream of an oncogene to generate an expressed gene fusion. Repeated activation of a common downstream partner-with differing upstream regions across a patient cohort-suggests a conserved oncogenic role. Analysis of 9,638 patients across 32 solid tumor types revealed an annotated long noncoding RNA (lncRNA), Breast Cancer Anti-Estrogen Resistance 4 (BCAR4), was the most prevalent, uncharacterized, downstream gene fusion partner occurring in 11 cancers. Its oncogenic role was confirmed using multiple cell lines with endogenous BCAR4 gene fusions. Furthermore, overexpressing clinically prevalent BCAR4 gene fusions in untransformed cell lines was sufficient to induce an oncogenic phenotype. We show that the minimum common region to all gene fusions harbors an open reading frame that is necessary to drive proliferation. IMPLICATIONS: BCAR4 gene fusions represent an underappreciated class of gene fusions that may have biological and clinical implications across solid tumors.


Assuntos
Neoplasias , RNA Longo não Codificante , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Neoplasias/genética , Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
PLoS One ; 13(10): e0204978, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289931

RESUMO

The nonsense mediated RNA decay (NMD) pathway safeguards the integrity of the transcriptome by targeting mRNAs with premature translation termination codons (PTCs) for degradation. It also regulates gene expression by degrading a large number of non-mutant RNAs (including mRNAs and noncoding RNAs) that bear NMD-inducing features. Consequently, NMD has been shown to influence development, cellular response to stress, and clinical outcome of many genetic diseases. Small molecules that can modulate NMD activity provide critical tools for understanding the mechanism and physiological functions of NMD, and they also offer potential means for treating certain genetic diseases and cancer. Therefore, there is an intense interest in identifying small-molecule NMD inhibitors or enhancers. It was previously reported that both inhibition of NMD and treatment with the AMPK-selective inhibitor Compound C (CC) induce autophagy in human cells, raising the possibility that CC may be capable of inhibiting NMD. Here we show that CC indeed has a NMD-inhibitory activity. Inhibition of NMD by CC is, however, independent of AMPK activity. As a competitive ATP analog, CC does not affect the kinase activity of SMG1, an essential NMD factor and the only known kinase in the NMD pathway. However, CC treatment down-regulates the protein levels of several NMD factors. The induction of autophagy by CC treatment is independent of ATF4, a NMD target that has been shown to promote autophagy in response to NMD inhibition. Our results reveal a new activity of CC as a NMD inhibitor, which has implications for its use in basic research and drug development.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Linhagem Celular , Humanos , Estabilidade de RNA/efeitos dos fármacos
3.
Methods Mol Biol ; 1720: 213-224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29236262

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway degrades aberrant transcripts containing premature translation termination codons (PTCs) and also regulates the levels of many normal mRNAs containing NMD-inducing features. The activity of this pathway varies considerably in different cell types and can change in response to developmental and environmental cues. Modulating NMD activity represents a potential therapeutic avenue for certain genetic disorders and cancers. Simple reporter systems capable of faithfully assessing NMD activity in mammalian cells greatly facilitate both basic and translational research on NMD. Here we describe a simple and effective method for assaying NMD specifically and quickly in live mammalian cells using a multicolored bioluminescence-based reporter system. This reporter can be transiently or stably introduced into cultured cells as well as animals, and NMD activity can be accurately assessed by bioluminescence imaging, western blot, or RT-qPCR.


Assuntos
Genes Reporter , Vetores Genéticos/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/metabolismo , Transfecção/métodos , Animais , Linhagem Celular , Códon sem Sentido/genética , Citomegalovirus/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Humanos , Luciferases/química , Luciferases/genética , Luminescência , Medições Luminescentes/métodos , RNA Mensageiro/isolamento & purificação
4.
J Biol Chem ; 292(37): 15266-15276, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765281

RESUMO

Persistent DNA damage induces profound alterations in gene expression that, in turn, influence tissue homeostasis, tumorigenesis, and cancer treatment outcome. However, the underlying mechanism for gene expression reprogramming induced by persistent DNA damage remains poorly understood. Here, using a highly effective bioluminescence-based reporter system and other tools, we report that persistent DNA damage inhibits nonsense-mediated RNA decay (NMD), an RNA surveillance and gene-regulatory pathway, in noncycling cells. NMD suppression by persistent DNA damage required the activity of the p38α MAPK. Activating transcription factor 3 (ATF3), an NMD target and a key stress-inducible transcription factor, was stabilized in a p38α- and NMD-dependent manner following persistent DNA damage. Our results reveal a novel p38α-dependent pathway that regulates NMD activity in response to persistent DNA damage, which, in turn, controls ATF3 expression in affected cells.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/metabolismo , Fator 3 Ativador da Transcrição/química , Fator 3 Ativador da Transcrição/genética , Biomarcadores/metabolismo , Bleomicina/toxicidade , Células Cultivadas , Senescência Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Raios gama/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Genes Reporter/efeitos dos fármacos , Genes Reporter/efeitos da radiação , Células HEK293 , Humanos , Medições Luminescentes , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Mutagênicos/toxicidade , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos da radiação , Estresse Oxidativo , Estabilidade Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos da radiação , Interferência de RNA , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/efeitos da radiação , RNA Mensageiro/química
5.
J Exp Med ; 213(2): 209-23, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26834154

RESUMO

DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre-B cell receptor (pre-BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre-BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre-B cells. Here, we show that RAG DSBs inhibit pre-BCR signals through the ATM- and NF-κB2-dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre-BCR signaling. This regulatory circuit prevents the pre-BCR from inducing additional Igl chain gene rearrangements and driving pre-B cells with RAG DSBs into cycle. We propose that pre-B cells toggle between pre-BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Homeodomínio/metabolismo , Receptores de Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/imunologia , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Rearranjo Gênico de Cadeia Leve de Linfócito B , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subunidade p52 de NF-kappa B/deficiência , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Células Precursoras de Linfócitos B/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/imunologia , Quinase Syk , Transativadores/metabolismo , Quinase Induzida por NF-kappaB
6.
Nat Med ; 20(8): 961-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25064126

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway selectively eliminates aberrant transcripts containing premature translation termination codons and regulates the levels of a number of physiological mRNAs. NMD modulates the clinical outcome of a variety of human diseases, including cancer and many genetic disorders, and may represent a target for therapeutic intervention. Here, we have developed a new multicolored bioluminescence-based reporter system that can specifically and effectively assay NMD in live human cells. Using this reporter system, we conducted a robust high-throughput small-molecule screen in human cells and, unpredictably, identified a group of cardiac glycosides, including ouabain and digoxin, as potent inhibitors of NMD. Cardiac glycoside-mediated effects on NMD are dependent on binding and inhibiting the sodium-potassium ATPase on the plasma membrane and subsequent elevation of intracellular calcium levels. Induction of calcium release from the endoplasmic reticulum also leads to inhibition of NMD. Thus, this study reveals intracellular calcium as a key regulator of NMD and has implications for exploiting NMD in the treatment of disease.


Assuntos
Cálcio/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Glicosídeos Cardíacos/metabolismo , Linhagem Celular , Membrana Celular/enzimologia , Digoxina/metabolismo , Retículo Endoplasmático/metabolismo , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos , Medições Luminescentes , Ouabaína/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
J Exp Med ; 209(1): 11-7, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22201128

RESUMO

Interleukin 7 (IL-7) promotes pre-B cell survival and proliferation by activating the Pim1 and Akt kinases. These signals must be attenuated to induce G1 cell cycle arrest and expression of the RAG endonuclease, which are both required for IgL chain gene rearrangement. As lost IL-7 signals would limit pre-B cell survival, how cells survive during IgL chain gene rearrangement remains unclear. We show that RAG-induced DNA double-strand breaks (DSBs) generated during IgL chain gene assembly paradoxically promote pre-B cell survival. This occurs through the ATM-dependent induction of Pim2 kinase expression. Similar to Pim1, Pim2 phosphorylates BAD, which antagonizes the pro-apoptotic function of BAX. However, unlike IL-7 induction of Pim1, RAG DSB-mediated induction of Pim2 does not drive proliferation. Rather, Pim2 has antiproliferative functions that prevent the transit of pre-B cells harboring RAG DSBs from G1 into S phase, where these DNA breaks could be aberrantly repaired. Thus, signals from IL-7 and RAG DSBs activate distinct Pim kinase family members that have context-dependent activities in regulating pre-B cell proliferation and survival.


Assuntos
Quebras de DNA de Cadeia Dupla , Células Precursoras de Linfócitos B/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Transposases/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Sobrevivência Celular/genética , Dano ao DNA , Genes RAG-1 , Interleucina-7/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transposases/genética , Proteína de Morte Celular Associada a bcl/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA