Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36836615

RESUMO

Chronic myeloid leukemia (CML), BCR-ABL1-positive, is classified as a myeloproliferative characterized by Philadelphia chromosome/translocation t(9;22) and proliferating granulocytes. Despite the clinical success of tyrosine kinase inhibitors (TKi) agents in the treatment of CML, most patients have minimal residual disease contained in the bone marrow microenvironment, within which stromal cells assume a pro-inflammatory phenotype that determines their transformation in cancer-associated fibroblasts (CAF) which, in turn can play a fundamental role in resistance to therapy. Insulin-like Growth Factor Binding Protein-6 (IGFBP-6) is expressed during tumor development, and is involved in immune-escape and inflammation as well, providing a potential additional target for CML therapy. Here, we aimed at investigating the role of IGFBP-6/SHH/TLR4 axis in TKi response. We used a CML cell line, LAMA84-s, and healthy bone marrow stromal cells, HS-5, in mono- or co-culture. The two cell lines were treated with Dasatinib and/or IGFBP-6, and the expression of inflammatory markers was tested by qRT-PCR; furthermore, expression of IGFBP-6, TLR4 and Gli1 were evaluated by Western blot analysis and immumocytochemistry. The results showed that both co-culture and Dasatinib exposure induce inflammation in stromal and cancer cells so that they modulate the expression of TLR4, and these effects were more marked following IGFBP-6 pre-treatment suggesting that this molecule may confer resistance through the inflammatory processes. This phenomenon was coupled with sonic hedgehog (SHH) signaling. Indeed, our data also demonstrate that HS-5 treatment with PMO (an inducer of SHH) induces significant modulation of TLR4 and overexpression of IGFPB-6 suggesting that the two pathways are interconnected with each other and with the TLR-4 pathway. Finally, we demonstrated that pretreatment with IGFBP-6 and/or PMO restored LAMA-84 cell viability after treatment with Dasatinib, suggesting that both IGFBP-6 and SHH are involved in the resistance mechanisms induced by the modulation of TLR-4, thus indicating that the two pathways may be considered as potential therapeutic targets.

2.
Cells ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939824

RESUMO

Nerve growth factor (NGF) is a protein necessary for development and maintenance of the sympathetic and sensory nervous systems. We have previously shown that the NGF N-terminus peptide NGF(1-14) is sufficient to activate TrkA signaling pathways essential for neuronal survival and to induce an increase in brain-derived neurotrophic factor (BDNF) expression. Cu2+ ions played a critical role in the modulation of the biological activity of NGF(1-14). Using computational, spectroscopic, and biochemical techniques, here we report on the ability of a newly synthesized peptide named d-NGF(1-15), which is the dimeric form of NGF(1-14), to interact with TrkA. We found that d-NGF(1-15) interacts with the TrkA-D5 domain and induces the activation of its signaling pathways. Copper binding to d-NGF(1-15) stabilizes the secondary structure of the peptides, suggesting a strengthening of the noncovalent interactions that allow for the molecular recognition of D5 domain of TrkA and the activation of the signaling pathways. Intriguingly, the signaling cascade induced by the NGF peptides ultimately involves cAMP response element-binding protein (CREB) activation and an increase in BDNF protein level, in keeping with our previous result showing an increase of BDNF mRNA. All these promising connections can pave the way for developing interesting novel drugs for neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cobre/farmacologia , Fator de Crescimento Neural/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dimerização , Endocitose/efeitos dos fármacos , Feminino , Ionóforos/farmacologia , Fator de Crescimento Neural/química , Células PC12 , Fenótipo , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Ratos , Ratos Wistar , Receptor trkA/química , Receptor trkA/metabolismo , Termodinâmica
3.
Oncotarget ; 9(91): 36289-36316, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30555630

RESUMO

Copper homeostasis is generally investigated focusing on a single component of the metallostasis network. Here we address several of the factors controlling the metallostasis for neuroblastoma cells (SH-SY5Y) upon treatment with 2,9-dimethyl-1,10-phenanthroline-5,6-dione (phendione) and 2,9-dimethyl-1,10-phenanthroline (cuproindione). These compounds bind and transport copper inside cells, exert their cytotoxic activity through the induction of oxidative stress, causing apoptosis and alteration of the cellular redox and copper homeostasis network. The intracellular pathway ensured by copper transporters (Ctr1, ATP7A), chaperones (CCS, ATOX, COX 17, Sco1, Sco2), small molecules (GSH) and transcription factors (p53) is scrutinised.

4.
Chemistry ; 22(37): 13287-300, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27493030

RESUMO

Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic ß cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu(2+) ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu(2+) ions present in phosphate-buffered saline (PBS), and 3) a reducing fluorogenic probe on H2 O2 production attributed to the polypeptide alone.


Assuntos
Complexos de Coordenação/química , Cobre/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Animais , Sítios de Ligação , Complexos de Coordenação/metabolismo , Histidina/química , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Polietilenoglicóis/química , Ligação Proteica , Estrutura Secundária de Proteína , Ratos , Termodinâmica
5.
J Inorg Biochem ; 142: 39-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25310602

RESUMO

Heptapeptide Semax, encompassing the sequence 4-7 of N-terminal domain of the adrenocorticotropic hormone (ACTH) and a C-terminal Pro-Gly-Pro tripeptide, belongs to a short regulatory peptides family. This compound has been found to affect learning processes and to exert marked neuroprotective activities on cognitive brain functions. Dys-homeostasis of metal ions is involved in several neurodegenerative disorders and growing evidences have showed that brain is a specialized organ able to concentrate metal ions. In this work, the metal binding ability and protective activity of Semax and its metal complexes were studied. The equilibrium study clearly demonstrated the presence of three complex species. Two minor species [CuL] and [CuLH-1]- co-exist together with the [CuLH-2]2- in the pH range from 3.6 to 5. From pH5 the [CuLH-2]2- species becomes predominant with the donor atoms around copper arranged in a 4N planar coordination mode. Noteworthy, a reduced copper induced cytotoxicity was observed in the presence of Semax by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on a SHSY5Y neuroblastoma and RBE4 endothelial cell lines.


Assuntos
Hormônio Adrenocorticotrópico/análogos & derivados , Cobre/toxicidade , Fragmentos de Peptídeos/química , Hormônio Adrenocorticotrópico/química , Hormônio Adrenocorticotrópico/farmacologia , Linhagem Celular , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fragmentos de Peptídeos/farmacologia , Potenciometria/métodos
6.
Metallomics ; 6(10): 1841-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25080969

RESUMO

Amylin is a 37-residue peptide hormone produced by the islet ß-cells of pancreas and the formation of amylin aggregates is strongly associated with ß-cell degeneration in type 2 diabetes, as demonstrated by more than 95% of patients exhibiting amylin amyloid upon autopsy. It is widely recognized that metal ions such as copper(II) have been implicated in the aggregation process of amyloidogenic peptides such as Aß and α-synuclein and there is evidence that amylin self-assembly is also largely affected by copper(II). For this reason, in this work, the role of copper(II) in the aggregation of amylin has been investigated by several different experimental approaches. Mass spectrometric investigations show that copper(II) induces significant changes in the amylin structure, which decrease the protein fibrillogenesis as observed by ThT measurements. Accordingly, solid-state NMR experiments together with computational analysis carried out on a model amylin fragment confirmed the non-fibrillogenic nature of the copper(II) induced aggregated structure. Finally, the presence of copper(II) is also shown to have a major influence on amylin proneness to be degraded by proteases and cytotoxicity studies on different cell cultures are reported.


Assuntos
Cobre/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteólise
7.
Chemistry ; 18(49): 15618-31, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23135810

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that influences development, maintenance, survival, and synaptic plasticity of central and peripheral nervous systems. Altered BDNF signaling is involved in several neurodegenerative disorders including Alzheimer's disease. Metal ions may influence the BDNF activity and it is well known that the alteration of Cu(2+) homeostasis is a prominent factor in the development of neurological pathologies. The N-terminal domain of BDNF represents the recognition site of its specific receptor TrkB, and metal ions interaction with this protein domain may influence the protein/receptor interaction. In spite of this, no data inherent the interaction of BDNF with Cu(2+) ions has been reported up to now. Cu(2+) complexes of the peptide fragment BDNF(1-12) encompassing the sequence 1-12 of N-terminal domain of human BDNF protein were characterized by means of potentiometry, spectroscopic methods (UV/Vis, CD, EPR), parallel tempering simulations and DFT-geometry optimizations. Coordination features of the acetylated form, Ac-BDNF(1-12), were also characterized to understand the involvement of the terminal amino group. Whereas, an analogous peptide, BDNF(1-12)D3N, in which the aspartate residue was substituted by an asparagine, was synthesized to provide evidence on the possible role of carboxylate group in Cu(2+) coordination. The results demonstrated that the amino group is involved in metal binding and the metal coordination environment of the predominant complex species at physiological pH consisted of one amino group, two amide nitrogen atoms, and one carboxylate group. Noteworthy, a strong decrease of the proliferative activity of both BDNF(1-12) and the whole protein on a SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). The effect of metal addition is opposite to that observed for the analogous fragment of nerve growth factor (NGF) protein, highlighting the role of specific domains, and suggesting that Cu(2+) may drive different pathways for the BDNF and NGF in physiological as well as pathological conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cobre/química , Cobre/metabolismo , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Humanos , Fragmentos de Peptídeos/metabolismo , Espectrofotometria Ultravioleta
8.
Biochemistry ; 48(27): 6522-31, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19441807

RESUMO

Mildly denaturing conditions induce bovine alpha-crystallin, the major structural lens protein, to self-assemble into fibrillar structures in vitro. The natural dipeptide l-carnosine has been shown to have potential protective and therapeutic significance in many diseases. Carnosine derivatives have been proposed as potent agents for ophthalmic therapies of senile cataracts and diabetic ocular complications. Here we report the inhibitory effect induced by the peptide (l- and d-enantiomeric form) on alpha-crystallin fibrillation and the almost complete restoration of the chaperone activity lost after denaturant and/or heat stress. Scanning force microscopy (SFM), thioflavin T, and a turbidimetry assay have been used to determine the morphology of alpha-crystallin aggregates in the presence and absence of carnosine. DSC and a near-UV CD assay evidenced that the structural precursors of amyloid fibrils are polypeptide chain segments that lack stable structural elements. Moreover, we have found a disassembling effect of carnosine on alpha-crystallin amyloid fibrils. Finally, we show the ability of carnosine to restore most of the lens transparency in organ-cultured rat lenses exposed to similar denaturing conditions that were used for the in vitro experiments.


Assuntos
Amiloide/química , Carnosina/química , Catarata/metabolismo , alfa-Cristalinas/química , Animais , Varredura Diferencial de Calorimetria , Carnosina/farmacologia , Bovinos , Dicroísmo Circular , Feminino , Microscopia de Força Atômica , Chaperonas Moleculares/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Estereoisomerismo , alfa-Cristalinas/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA