Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36548713

RESUMO

Gossypol is a polyphenolic toxic secondary metabolite derived from cotton. Free gossypol in cotton meal is remarkably harmful to animals. Furthermore, microbial degradation of gossypol produces metabolites that reduce feed quality. We adopted an enzymatic method to degrade free gossypol safely and effectively. We cloned the gene cce001a encoding carboxylesterase (CarE) into pPICZαA and transformed it into Pichia pastoris GS115. The target protein was successfully obtained, and CarE CCE001a could effectively degrade free gossypol with a degradation rate of 89%. When esterase was added, the exposed toxic groups of gossypol reacted with different amino acids and amines to form bound gossypol, generating substances with (M + H) m/z ratios of 560.15, 600.25, and 713.46. The molecular formula was C27H28O13, C34H36N2O6, and C47H59N3O3. The observed instability of the hydroxyl groups caused the substitution and shedding of the group, forming a substance with m/z of 488.26 and molecular formula C31H36O5. These properties render the CarE CCE001a a valid candidate for the detoxification of cotton meal. Furthermore, the findings help elucidate the degradation process of gossypol in vitro.


Assuntos
Carboxilesterase , Gossipol , Mariposas , Animais , Carboxilesterase/genética , Carboxilesterase/metabolismo , Gossipol/metabolismo , Mariposas/enzimologia , Pichia/enzimologia , Pichia/genética , Biotransformação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
AMB Express ; 9(1): 98, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278483

RESUMO

Gossypol is a toxic polyphenolic product that is derived from cotton plants. The toxicity of gossypol has limited the utilization of cottonseed meal (CSM) in the feed industry. The gene, Helicoverpa armigera CYP9A12, is a gossypol-inducible cytochrome P450 gene. The objective of our study was to obtain the functional recombinant H. armigera CYP9A12 enzyme in Pichia pastoris and to verify whether this candidate enzyme could decrease gossypol in vitro. Free and total gossypol contents were detected in the enzyme solution and in CSM. The H. armigera CYP9A12 enzyme degraded free concentration of gossypol. After optimization of the single-test and response surface method, free gossypol content could be decreased to 40.91 mg/kg in CSM by the H. armigera CYP9A12 enzyme when the initial temperature was 35 °C, the enzymatic hydrolysis time lasted 2.5 h, the enzyme addition was 2.5 mL, and the substrate moisture was 39%.

3.
Pestic Biochem Physiol ; 155: 15-25, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30857623

RESUMO

Gossypol is a polyphonic toxic compound that is present in cotton plants. The P450 cytochromes CYP6AE14 and CYP9A12 of Helicoverpa armigera are highly induced by gossypol and have been reported to be possibly involved in gossypol degradation. To determine whether the candidate H. armigera CYP6AE14 and CYP9A12 enzymes could metabolize gossypol in vitro, functional recombinant H. armigera CYP6AE14 and CPR (CYP9A12 and CPR) enzymes were successfully expressed in Pichia pastoris (P. pastoris). UPLC-QTOF/MS demonstrated the following results: (1) Free gossypol was spontaneously degraded to the gossypol metabolites G1 (m/z 265) and G2 (m/z 293) without the addition of any enzyme. (2) Free gossypol was observed following the addition of the endogenous or recombinant H. armigera P450 cytochrome CYP6AE14/CYP9A12 enzyme: in the first pathway, free gossypol was dehydroxylated and decarboxylated to G3 (m/z 453), and in the second pathway, the aldehyde group of gossypol and its metabolite were covalently bound with the amine products to form G4 (m/z 437) and G5 (m/z 783). (3) In addition to the gossypol binding pathways, the recombinant H. armigera CPR and CYP9A12 enzymes was found that could further decarboxylate the gossypol intermediate demethylated reduction of gossypolonic acid (m/z 294) and demethylated gossic acid (m/z 265) to G0 (m/z 209) and G0' (m/z 249) respectively.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Gossipol/metabolismo , Mariposas/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pichia/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Mariposas/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Pichia/genética
4.
Food Sci Biotechnol ; 27(6): 1791-1799, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30483444

RESUMO

In this study, the immunomodulatory activity of oligopeptide (CP) derived from solid-state fermented cottonseed meal were investigated in immunosuppressed BALB/c mice models by treatment with cyclophosphamide (CY). Results indicated that oligopeptide increased the thymus and spleen indices of CY-treated mice. The count of plague forming cells (PFC) and the content of half serum hemolysis (HC50) in immunosuppressive mice were restored to the normal level in CP-10 and CP-20 groups while the cytokines interleukin (IL)-2, IL-6, and tumor necrosis factor alpha (TNF-α) were increased significantly in CP-20 group. Similar increasing the immunoglobulin of IgG and IgM content in the serum of CP-10 group were also observed. These findings indicated that oligopeptide derived from solid-state fermented cottonseed meal had a strong immune-enhancing activity as well as a protective effect against immunosuppression induced by cyclophosphamide in mice.

5.
Braz. j. microbiol ; 49(2): 392-400, Apr.-June 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889230

RESUMO

Abstract The study of metabolomics requires extracting as many metabolites as possible from a biological sample. This study aimed to determine the optimal method for the extraction of metabolites from solid-state fermented cottonseed meal (FCSM). The UPLC-Q-TOF-MS global metabolomics technology was used to detect the metabolites in FCSM, and the extraction quantity and extraction efficiency of seven different extraction methods, specifically the WA, 50MeOH, 50MeOHB, 50MeCNB, 80MeOHB, 80MeOH and AMF methods were evaluated. The results showed that the number of VIP metabolites extracted by AMF method are 196 and 184 in ESI+ and ESI- mode respectively, it is the largest number of all exacted methods; and the AMF methods also provided a higher extraction efficiency compared with the other methods, especially in indoleacrylic acid, dl-tryptophan and epicatechin (p < 0.01). As a result, AMF/-4 °C method was identified as the best method for the extraction of metabolites from FCSM by Lactobacillus acidophilus. Our study establishes a technical basis for future metabolomics research of fermented feed.


Assuntos
Sementes/metabolismo , Extratos Vegetais/química , Gossypium/metabolismo , Metaboloma , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/química , Espectrometria de Massas , Cromatografia , Metabolômica
6.
Int J Mol Sci ; 19(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570613

RESUMO

Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistência à Insulina/fisiologia , Isoleucina/metabolismo , Leucina/metabolismo , Doenças Metabólicas/metabolismo , Transdução de Sinais , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA