Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(10): 2559-2570, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38362614

RESUMO

Pathologic myopia has seriously jeopardized the visual health of adolescents in the past decades. The progression of high myopia is associated with a decrease in collagen aggregation and thinning of the sclera, which ultimately leads to longer eye axis length and image formation in front of the retina. Herein, we report a fibroblast-loaded hydrogel as a posterior scleral reinforcement (PSR) surgery implant for the prevention of myopia progression. The fibroblast-loaded gelatin methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel was prepared through bioprinting with digital light processing (DLP). The introduction of the PEGDA component endowed the GelMA-PEGDA hydrogel with a high compression modulus for PRS surgery. The encapsulated fibroblasts could consistently maintain a high survival rate during 7 days of in vitro incubation, and could normally secrete collagen type I. Eventually, both the hydrogel and fibroblast-loaded hydrogel demonstrated an effective shortening of the myopic eye axis length in a guinea pig model of visual deprivation over three weeks after implantation, and the sclera thickness of myopic guinea pigs became significantly thicker after 4 weeks, verifying the success of sclera remodeling and showing that myopic progression was effectively controlled. In particular, the fibroblast-loaded hydrogel demonstrated the best therapeutic effect through the synergistic effect of cell therapy and PSR surgery.


Assuntos
Miopia , Esclera , Animais , Cobaias , Modelos Animais de Doenças , Esclera/patologia , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Miopia/tratamento farmacológico , Miopia/prevenção & controle , Miopia/patologia , Fibroblastos/patologia , Impressão Tridimensional
2.
Adv Healthc Mater ; : e2303685, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386972

RESUMO

Recently, hydrogel adhesive patches have been explored for treating myocardial infarction. However, achieving secure adhesion onto the wet beating heart and local regulation of pathological microenvironment remains challenging. Herein, a dough-kneading-inspired design of hydrogel adhesive cardiac patch is reported, aiming to improve the strength of prevalent powder-formed patch and retain wet adhesion. In mimicking the polysaccharide and protein components of natural flour, methacrylated polyglutamic acid (PGAMA) is electrostatically interacted with hydroxypropyl chitosan (HPCS) to form PGAMA/HPCS coacervate hydrogel. The PGAMA/HPCS hydrogel is freeze-dried and ground into powders, which are further rehydrated with two aqueous solutions of functional drug, 3-acrylamido phenylboronic acid (APBA)/rutin (Rt) complexes for protecting the myocardium from advanced glycation end product (AGEs) injury by reactive oxygen species (ROS) -responsive Rt release, and hypoxanthine-loaded methacrylated hyaluronic acid (HAMA) nanogels for enhancing macrophage targeting ability to regulate glycometabolism for combating inflammation. The rehydrated powders bearing APBA/Rt complexes and HAMA-hypoxanthine nanogels are repeatedly kneaded into a dough-like gel, which is further subjected to thermal-initiated crosslinking to form a stabilized and sticky patch. This biofunctional patch is applied onto the rats' infarcted myocardium, and the outcomes at 28 days post-surgery indicate efficient restoration of cardiac functions and attenuation of cardiac fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA