Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Food Chem ; 443: 138460, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295566

RESUMO

Currently, planting selenium-rich crops using inorganic selenium such as selenate and selenite is used to address human selenium deficiency problems. In this paper, besides the above two traditional inorganic selenium speciation, we chose a new organic selenium speciation of potassium selenocyanoacetate to investigate the different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism via foliar application. Plantingexperiments showed that the selenium content of garlic bulbs treated with organic selenium was 1.8-3.9 times higher than that of inorganic selenium. Additionally, the absorption and transformation efficiency of organic selenium in garlic was also the highest, reaching over 95 %. Importantly, it was noteworthy that the cadmium content in bulbs treated with organic selenium was significantly lower than the Chinese food safety standard (0.2 mg/kg). Hence, this study provides an efficient organic selenium speciation which is beneficial to meet human selenium requirements and ensure safe utilization of cadmium-contaminated soils.


Assuntos
Alho , Selênio , Humanos , Selênio/farmacologia , Cádmio , Ácido Selenioso , Antioxidantes , Ácido Selênico
2.
J Hazard Mater ; 448: 130949, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860077

RESUMO

Colloids are wide-spread in natural waters and colloid-facilitated transport via adsorption was established as the most important mechanism for the mobilization of aqueous contaminants. This study reports another possible, but reasonable, role of colloids for the contaminants driven by redox reactions. Under the same conditions (pH 6.0, 0.3 ml 30% H2O2, and 25 °C), the degradation efficiencies of methylene blue (MB) at 240 min over Fe colloid, Fe ion, Fe oxide and Fe(OH)3 were 95.38%, 42.66%, 4.42% and 9.40%. We suggested that, Fe colloid can promote the H2O2 based in-situ chemical oxidation process (ISCO) compared with other iron species such as Fe(Ⅲ) ion, Fe oxide and Fe(OH)3 in natural water. Furthermore, the MB removal via adsorption by Fe colloid was only 1.74% at 240 min. Hence, the occurrence, behavior and fate of MB in Fe colloid containing natural water system mainly depends on the reduction-oxidation rather than adsorption-desorption process. Based on the mass balance of colloidal iron species and characterization of iron configurations distribution, Fe oligomers were the active and dominant components for Fe colloid-driven enhanced H2O2 activation among three types of Fe species. The quick and steady conversion of Fe(III) to Fe(II) was proven to be reason why Fe colloid can efficiently react with H2O2 to produce hydroxyl radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA