Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7644-7655, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412252

RESUMO

Engineering exosomes with nanomaterials usually leads to the damage of exosomal membrane and bioactive molecules. Here, pathological angiogenesis targeting exosomes with magnetic imaging, ferroptosis inducing, and immunotherapeutic properties is fabricated using a simple coincubation method with macrophages being the bioreactor. Extremely small iron oxide nanoparticle (ESIONPs) incorporated exosomes (ESIONPs@EXO) are acquired by sorting the secreted exosomes from M1-polarized macrophages induced by ESIONPs. ESIONPs@EXO suppress pathological angiogenesis in vitro and in vivo without toxicity. Furthermore, ESIONPs@EXO target pathological angiogenesis and exhibit an excellent T1-weighted contrast property for magnetic resonance imaging. Mechanistically, ESIONPs@EXO induce ferroptosis and exhibit immunotherapeutic ability toward pathological angiogenesis. These findings demonstrate that a pure biological method engineered ESIONPs@EXO using macrophages shows potential for targeted pathological angiogenesis therapy.


Assuntos
Exossomos , Humanos , Angiogênese , Macrófagos , Neovascularização Patológica/terapia , Nanopartículas Magnéticas de Óxido de Ferro
2.
Nanomedicine (Lond) ; 19(7): 597-613, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38299352

RESUMO

Background: Copper oxide nanoparticles (CuO NPs) exhibit antitumor activity; however, their potential as an antiangiogenesis agent is unknown. Materials & methods: The antiangiogenesis properties of CuO NPs were evaluated in vitro and in vivo and the underlying mechanism was examined using RNA sequencing and metabolomic analyses. Results: CuO NPs inhibited endothelial cell function in vitro. They also mitigated retinal vasculature development and alleviated pathological retinal angiogenesis in vivo. RNA sequencing and metabolomic analyses revealed that CuO NPs disrupt the tricarboxylic acid cycle and induce cuproptosis, which was further supported by evaluating cuproptosis-related metabolites and proteins. Conclusion: CuO NPs may be an effective antiangiogenic agent for the treatment of retinal angiogenesis.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre/farmacologia , Angiogênese , Nanopartículas/metabolismo , Células Endoteliais/metabolismo , Óxidos
3.
Chempluschem ; 88(11): e202300387, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37728035

RESUMO

Colon cancer is emerging as one of the most common cancers worldwide, ranking in the top three in morbidity and mortality. Oral methotrexate (MTX) has been employed as a first-line treatment for various cancers, such as colon, breast, and lung cancer. However, the complexity and particularity of the gastrointestinal microenvironment and the limitations of MTX itself, including severe adverse effects and instability, are the main obstacles to the safe delivery of MTX to colon tumor sites. Herein, an innovative oral administrated anticancer therapeutic MTX@Am7CD/SDS NPs equipped with both pH and temperature sensitivity, which could effectively prevent MTX@Am7CD/SDS NPs from being degraded in the acidic environment mimicking the stomach and small intestine, thus harboring the potential to accumulate at the site of colon lesions and further release intestinal drug under mild conditions. In cellular assays, compared with free MTX, MTX@Am7CD/SDS NPs showed a favorable tumor inhibition effect on three tumor cell lines, as well as excellent cell uptake and apoptosis-inducing effect on SW480 cells. Therefore, this work provides a feasible solution for the safe use of MTX in the treatment of colon cancer and even other intestinal diseases.


Assuntos
Neoplasias do Colo , Nanopartículas , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada , Neoplasias do Colo/tratamento farmacológico , Microambiente Tumoral
4.
Asian Spine J ; 17(5): 985-995, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690991

RESUMO

The purpose of this research was to compare the therapeutic efficacy of multiple-rod constructs vis-a-vis 2-rod constructs in the treatment of adult spinal deformity. A systematic review and meta-analysis were performed to determine whether the multiple-rod construct outperformed the 2-rod construct. We initially retrieved 357 papers, but only 12 were chosen for further meta-analysis. The rod breakage rates in the multiple-rod and the 2-rod groups were 10.66% and 29.87%, respectively. The multiple-rod construct inhibited rod breakage (odds ratio [OR], 0.28; 95% confidence interval [CI], 0.19-0.41; p<0.001), pseudarthrosis (OR, 0.30; 95% CI, 0.18-0.50; p<0.001) and rod fracture at the osteotomy site (OR, 0.34; 95% CI, 0.13-0.89; p=0.03). Furthermore, the multiple-rod construct reduces the risk of revision surgery (OR, 0.38; 95% CI, 0.20-0.73; p=0.04) as well as the revision risk of pseudarthrosis/rod fracture in the multiple- rod group (OR, 0.31; 95% CI, 0.18-0.52; p<0.001), but increases the risk of caudal screw loosening (OR, 4.99; 95% CI, 1.87-13.30; p=0.001). There was no statistically significant difference in proximal junctional kyphosis (PJK) parameters (p=0.85), cerebrospinal fluid leakage (p=0.09), wound infection (p =0.71), age at surgery (p=0.62), gender distribution (p=0.93), body mass index (p =0.86), smoking status (p=0.05), hospital stay (p=0.09), osteoporosis (p=0.95), CoCr rod material (p=0.15), bone morphogenetic protein-2 (p=0.58), L5/S1 interbody fusion (p=0.07), high-grade osteotomies (p=0.07), the number of fusion levels (p=0.11), operation time (p=0.30), and blood loss volume (p=0.34). Regarding radiographic parameters, only preoperative sagittal vertical axis was found to be higher (weight means difference [WMD], 25.60; 95% CI, 15.43-35.77; p<0.001) in the multiple-rod group. There was no difference in preoperative Oswestry Disability Index (ODI) (WMD, -3.32; 95% CI, -7.38 to 0.73; p=0.11), but the multiple-rod group had a lower ODI at follow-up (WMD, -7.71; 95% CI, -11.62 to -3.86; p<0.001). Multiple-rod constructs could prevent rod breakage and pseudarthrosis while also lowering the revision rate, resulting in a better clinical outcome than the 2-rod construct. Nonetheless, due consideration should be given to PJK and screw loosening in multiple-rod constructs, possibly due to the increased stiffness caused by the multiple-rod structure.

5.
Heliyon ; 9(4): e15087, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128309

RESUMO

This work uses rice husk to fabricate mesoporous silica nanoparticles (D-RMN) for breast cancer therapy. The biocompatible dual-responsive (DAN-RMN) was developed by polymerizing acrylic acid (AA) and n-isopropyl acrylamide (NIPAM) on the DV-RMN surface monomeric ratio to increase drug delivery efficiency after vinyl groups were added to the surface of nanoparticles (DAN-RMN). Various analytical and spectroscopical methods characterized the fabricated nanoparticles. Additionally, further encapsulation with SN-38 into the DAN-RMN enhances anticancer efficiency. The in-vitro controlled SN-38 release displayed remarkable temperature and pH response. The MTT assay established the biocompatibility and cytotoxicity of natural sources of silica and DAN-RMN. The fabricated SN-38@DAN-RMN nanoparticles effectively killed the MDA-MB-231 and 4T1 cancerous cells, confirmed by the MTT assay. The IC50 values of SN-38@DAN-RMN in MDA-MB-231 and 4T1 for 1.8 µg/mL and 1.7 µg/mL, respectively. In addition, acridine orange-ethidium bromide (AO-EB) dual staining methods were used to determine morphological changes of cell shrinkage and fragmentation. Nuclear staining methods confirmed the nuclear fragmentation and condensation of the cells. Further, the cell death was examined using dual staining Annexin V-FITC/PI in flow cytometric analyses to assess apoptosis in the MDA-MB-231 and 4T1 cell lines. The apoptotic cell ratio of SN-38@DAN-RMN in MDA-MB-231 and 4T1 for 27.8 and 32.8, respectively. Since there is no drug leakage in the blood while the carrier is in circulation, the DAN-RMN nanocarrier may be used for targeted and stimuli-responsive administration using ultrasound imaging.

6.
Mater Today Bio ; 19: 100602, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36942311

RESUMO

Black phosphorus quantum dots (BPQDs) have shown potential in tumor therapy, however, their anti-angiogenic functions have not been studied. Although BPQDs are easily degraded to non-toxic phosphrous, the reported toxicity, poor stability, and non-selectivity largely limit their further application in medicine. In this study, a vascular targeting, biocompatible, and cell metabolism-disrupting nanoplatform is engineered by incorporating BPQDs into exosomes modified with the Arg-Gly-Asp (RGD) peptide (BPQDs@RGD-EXO nanospheres, BREs). BREs inhibit endothelial cells (ECs) proliferation, migration, tube formation, and sprouting in vitro. The anti-angiogenic role of BREs in vivo is evaluated using mouse retinal vascular development model and oxygen-induced retinopathy model. Combined RNA-seq and metabolomic analysis reveal that BREs disrupt glucose metabolism, which is further confirmed by evaluating metabolites, ATP production and the c-MYC/Hexokinase 2 pathway. These BREs are promising anti-angiogenic platforms for the treatment of pathological retinal angiogenesis with minimal side effects.

7.
Front Microbiol ; 13: 862894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814662

RESUMO

Babesia microti is an obligate intraerythrocytic protozoan transmitted by an Ixodes tick. Infections caused by protozoa, including Plasmodium yoelii and Toxoplasma gondii, are shown to inhibit tumor development by activating immune responses. Th1 immune response and macrophages not only are essential key factors in Babesia infection control but also play an important role in regulating tumor development. In this study, we investigated the effects of B. microti infection on melanoma in tumor-bearing mice. The results showed that B. microti infection could inhibit the growth of melanoma, significantly enlarge the spleen size (p ≤ 0.0001), and increase the survival period (over 7 days) of tumor-bearing mice. Mouse spleen immune cell analysis revealed that B. microti-infected tumor-bearing mice could increase the number of macrophages and CD4+ T cells, as well as the proportion of CD4+ T cells and M1 macrophages in the tumor. Immunohistochemical assays showed that B. microti infection could inhibit tumor angiogenesis (p ≤ 0.0032). Meanwhile, both B. microti-infected erythrocytes and culture supernatant were observed to significantly (p ≤ 0.0021) induce the mRNA expression of iNOS, IL-6, and TNF-α in macrophages. Moreover, B. microti culture supernatant could also repolarize IL-4-induced M2 macrophages to the M1 type. Overall, B. microti exerted antitumor effects by stimulating the immune system of tumor-bearing mice and inducing the polarization of immunosuppressive M2 macrophages to pro-inflammatory M1 macrophages.

8.
J Cell Physiol ; 236(10): 6948-6962, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33682931

RESUMO

ACSS1/2 converts acetate into acetyl-coenzyme A, which contributes to histone acetylation in the mitochondria and cytoplasm. Zygotic genome activation (ZGA) is critical for embryo development involving drastic histone modification. An efficient crRNAs-Cas13a targeting strategy was employed to investigate the ACSS1/2 function during ZGA. The results showed that nuclear accumulation of ACSS1 and ACSS2 occurs during ZGA. Knockdown of ACSS1/2 did not affect blastocyst formation when using a normal medium. On culturing embryos in a medium with acetate and no pyruvate (-P + Ace), knockdown of ACSS1 did not affect histone acetylation levels but significantly reduced ATP levels, whereas knockdown of ACSS2 significantly reduced histone acetylation levels in porcine embryos. Inhibition of fatty acid beta-oxidation by etomoxir significantly reduced ATP levels, which could be restored by acetate. The histone acetylation levels in the ACSS1 and ACSS2 knockdown groups both decreased considerably after etomoxir treatment. Moreover, acetate showed dose-dependent effects on SIRT1 and SIRT3 levels when under metabolic stress. The C-terminus of ACSS1 regulated the nuclear translocation. In conclusion, ACSS1/2 helps to maintain ATP and histone acetylation levels in porcine early embryos under metabolic stress during ZGA.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Zigoto/enzimologia , Acetato-CoA Ligase/genética , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Técnicas de Cultura Embrionária , Partenogênese , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Sus scrofa
9.
Int J Lab Hematol ; 43(4): 699-706, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33369192

RESUMO

Acute myeloid leukaemia (AML) is a frequently fatal malignant disease of haematopoietic stem and progenitor cells. The molecular and phenotypic characteristics of AML are highly heterogeneous. Our previous study concluded that CaMKIIγ was the trigger of chronic myeloid leukaemia progression from the chronic phase to blast crisis, but how CaMKIIγ influences AML stem-like cells remains elusive. In this study, we found that CaMKIIγ was overexpressed in AML patients and AML cell lines, as measured by qRT-PCR and Western blot assays. Moreover, CaMKIIγ decreased when the disease was in remission. Using an shRNA lentivirus expression system, we established CaMKIIγ stable-knockdown AML cell lines and found that knockdown of CaMKIIγ inhibited the viability and self-renewal of AML stem-like cell lines. Additionally, the ratio of CD34 + AML cell lines decreased, and CaMKIIγ knockdown induced the downregulation of Alox5 levels. We further detected downstream molecules of the Alox5/NF-κB pathway and found that c-myc and p-IκBα decreased while total IκBα remained normal. In conclusion, our study describes a new role for CaMKIIγ as a stem-like cell marker that is highly regulated by the Alox5/NF-κB pathway in AML stem-like cells. CaMKIIγ can participate in the viability and self-renewal of AML stem-like cells by regulating the Alox5/NF-κB pathway.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Leucemia Mieloide Aguda/patologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Autorrenovação Celular , Sobrevivência Celular , Humanos , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais
10.
Plant Cell Environ ; 44(2): 399-411, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131059

RESUMO

Drought is a cyclical phenomenon in natural environments. During dehydration, stomatal closure is mainly regulated by abscisic acid (ABA) dynamics that limit transpiration in seed plants, but following rehydration, the mechanism of gas exchange recovery is still not clear. In this study, leaf water potential (ψleaf ), stomatal conductance (gs ), leaf hydraulic conductance (Kleaf ), foliar ABA level, ethylene emission rate in response to dehydration and rehydration were investigated in four Caragana species with isohydric (Caragana spinosa and C. pruinosa) and anisohydric (C. intermedia and C. microphylla) traits. Two isohydric species with ABA-induced stomatal closure exhibited more sensitive gs and Kleaf to decreasing ψleaf than two anisohydric species which exhibited a switch from ABA to water potential-driven stomatal closure during dehydration. Following rehydration, the recovery of gas exchange was not associated with a decrease in ABA level but was strongly limited by the degradation of the ethylene emission rate in all species. Furthermore, two anisohydric species with low drought-induced ethylene production exhibited more rapid recovery in gas exchange upon rehydration. Our results indicated that ethylene is a key factor regulating the drought-recovery ability in terms of gas exchange, which may shape species adaptation to drought and potential species distribution.


Assuntos
Caragana/fisiologia , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Secas , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Sementes/fisiologia , Especificidade da Espécie , Água/metabolismo
11.
FASEB J ; 33(7): 7882-7895, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30897005

RESUMO

Phosphatase and tensin homolog-induced kinase 1 (PINK1) on the outer membranes of impaired mitochondria promotes mitophagy and regulates mitochondrial morphology. Mammalian oocytes and early embryos are mitochondria rich, but mitochondrial dynamics during preimplantation embryo development is not well-studied. To investigate whether PINK1 is required for mitochondrial dynamics in porcine preimplantation embryos, gene knockdown and inhibitors were used, and mitochondrial dynamics were observed by transmission electron microscopy. PINK1 knockdown significantly impaired blastocyst formation and quality, induced mitochondrial elongation and swelling, and reduced mitochondrial DNA copy number. PINK1 knockdown-induced mitochondrial elongation caused mitochondrial dysfunction, oxidative stress, and ATP deficiency, significantly increasing autophagy and apoptosis. Profission dynamin-related protein 1 overexpression prevented PINK1 knockdown-induced impairment of embryo development, mitochondrial elongation, and dysfunction. Thus, PINK1 promotes mitochondrial fission in porcine preimplantation embryos.-Niu, Y.-J., Nie, Z.-W., Shin, K.-T., Zhou, W., Cui, X.-S. PINK1 regulates mitochondrial morphology via promoting mitochondrial fission in porcine preimplantation embryos.


Assuntos
Blastocisto/fisiologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/fisiologia , Proteínas Quinases/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Autofagia , Blastocisto/metabolismo , Dinaminas/genética , Dinaminas/fisiologia , Desenvolvimento Embrionário , Dosagem de Genes , Técnicas de Silenciamento de Genes , Genes Mitocondriais , Técnicas de Maturação in Vitro de Oócitos , Potencial da Membrana Mitocondrial , Microinjeções , Partenogênese , Proteínas Quinases/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes , Sus scrofa
12.
Parasitol Res ; 118(5): 1581-1592, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826925

RESUMO

Ixodid ticks are ectoparasites responsible for the transmission of a large number of bacterial, viral, and protozoan pathogens to animals and humans. As long-term blood-pool feeders, the digestion of host blood is critical to their development as well as to the establishment of the sexual cycle of hemoparasites such as Babesia parasites, the agents of human and animal babesiosis. Previous studies have demonstrated that cysteine proteases are involved in blood digestion, embryogenesis, and pathogen transmission in other species of ticks, but their characteristics and functions are still unidentified in Haemaphysalis flava. Here, we describe the characterization of a cysteine protease HfCL from H. flava. We show that HfCL belongs to the L-like papain family of proteases, exhibits high expression in nymphs and adults, and localizes to both the midgut and salivary glands. Biochemical assays using purified recombinant enzyme reveal that rHfCL can hydrolyze the fluorogenic substrate Z-phe-Arg-MCA with optimal activity detected at pH 6. Furthermore, the short-term growth assay indicates that rHfCL can inhibit the intraerythrocytic development of Babesia microti and Babesia gibsoni in vitro.


Assuntos
Babesia/crescimento & desenvolvimento , Catepsina L/metabolismo , Cisteína Proteases/metabolismo , Ixodidae/enzimologia , Ixodidae/parasitologia , Animais , Babesiose/transmissão , Caspases , Humanos , Ninfa/parasitologia
13.
J Cell Physiol ; 234(6): 8963-8974, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317618

RESUMO

Spindlin 1 (SPIN1), which contains Tudor-like domains, regulates maternal transcripts via interaction with a messenger RNA (mRNA)-binding protein. SPIN1 is involved in tumorigenesis in somatic cells and is highly expressed in cancer cells. Nevertheless, the role of SPIN1 in porcine oocyte maturation remains totally unknown. To explore the function of SPIN1 in porcine oocyte maturation, knockdown, and overexpression techniques were used. SPIN1 mRNA was identified in maternal stages ranging from GV to MII. SPIN1 was localized in the cytoplasm and to chromosomes during meiosis. SPIN1 knockdown accelerated first polar body extrusion. Oocytes with overexpressed SPIN1 were arrested at the MI stage. SPIN1 depletion caused meiotic spindle defects and chromosome instability. The BUB3 signal was investigated, confirming that SPIN1 affects the stability of Bub3 mRNA as well as BUB3 expression. Further, overexpression of SPIN1 inhibited the degradation and regulation of G2/mitotic-specific cyclin-B1. In summation, SPIN1 regulates the meiotic cell cycle by modulating the activation of the spindle assembly checkpoint.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fuso Acromático/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Segregação de Cromossomos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos , Proteínas Associadas aos Microtúbulos/genética , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Transdução de Sinais , Sus scrofa , Fatores de Tempo
14.
Parasit Vectors ; 11(1): 667, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587207

RESUMO

BACKGROUND: The thrombospondin-related anonymous protein (TRAP) family, a kind of transmembrane protein, is widely distributed with a conserved feature of structure in all apicomplexan parasites and plays a crucial role in the gliding motility and survival of parasites. METHODS: The Babesia orientalis TRAP1 gene (BoTRAP1) was truncated and cloned into a pET-42b expression vector and expressed as a GST-tag fusion protein with a TEV protease site. Rabbit anti-rBoTRAP1 antibody was produced and purified using a protein A chromatography column. Western blot analysis was performed to identify the native protein of BoTRAP1 and differentiate B. orientalis-infected positive from negative serum samples. The localization of BoTRAP1 on merozoites was identified by the indirect florescent antibody test (IFAT). RESULTS: The partial sequence of the TRAP1 gene was cloned from B. orientalis cDNA and identified to contain a von Willebrand factor A (vWFA) region and a thrombospondin type-1 (TSP-1) domain; it had a length of 762 bp, encoding a polypeptide of 254 amino acid residues with a predicted size of 28.2 kDa. The partial sequence was cloned into a pET-42b expression vector and expressed in E. coli as a GST fusion protein. Western blot indicated that rBoTRAP1 has a high immunogenicity and can differentiate B. orientalis-infected positive and negative serum samples collected from water buffaloes. IFAT showed that BoTRAP1 is mainly localized on the apical end of intracellular parasites by using polyclonal antibodies (PcAb) against rBoTRAP1. Meanwhile, the PcAb test also identified the native BoTRAP1 as a ~65 kDa band from B. orientalis lysates. The predicted 3D structure of BoTRAP1 contains a metalion-dependent adhesion site (MIDAS), which could be important for interaction with ligand on the surface of the host cells. CONCLUSIONS: Like all known protozoa, B. orientalis has a TRAP family, comprising TRAP1, TRAP2, TRAP3 and TRAP4. The newly identified and characterized BoTRAP1 may play a key role in the invasion of B. orientalis into water buffalo erythrocytes.


Assuntos
Babesia/genética , Babesiose/parasitologia , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Babesia/química , Babesia/classificação , Babesia/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Dados de Sequência Molecular , Peso Molecular , Filogenia , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
15.
Parasit Vectors ; 11(1): 433, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045776

RESUMO

BACKGROUND: The spherical body, a membrane bound organelle localized in the apical organelle complex, is unique to Babesia and Theileria spp. The spherical body proteins (SBPs) secreted by spherical bodies include SBP1, SBP2, SBP3 and SBP4. Up to now, only SBP3 has been characterized in Babesia orientalis. METHODS: The BoSBP4 gene was amplified from cDNA and gDNA and cloned into the pGEX-6P-1 vector by homologous recombination, sequenced and analyzed by bioinformatics tools. The amino acid (aa) sequence of BoSBP4 was compared with that of Babesia bovis and Babesia bigemina as well as SBP3 of B. orientalis. The immunoreactivity was evaluated by incubating recombinant BoSBP4 (rBoSBP4) with the serum of B. orientalis-infected water buffalo. The native form of BoSBP4 was identified by incubating lysate of B. orientalis-infected water buffalo erythrocytes with the anti-rBoSBP4 mouse serum. The cellular localization of BoSBP4 was determined by indirect immunofluorescence assay. RESULTS: The full length of the BoSBP4 gene was estimated to be 945 bp without introns, encoding a 314 aa polypeptide with a predicted molecular weight of 37 kDa. The truncated recombinant protein was expressed from 70 to 945 bp as a GST fusion protein with a practical molecular weight of 70 kDa. BoSBP4 shared a 40% and 30% identity with B. bovis and B. bigemina, respectively. Furthermore, it was 31% identical to SBP3 of B. orientalis. BoSBP4 was identified in the lysate of B. orientalis-infected water buffalo erythrocytes with a molecular weight of 37 kDa, corresponding to the expected molecular mass of BoSBP4. The result of rBoSBP4 with positive serum revealed that BoSBP4 can elicit an immune response to B. orientalis-infected water buffalo. The cellular localization of BoSBP4 was detected to be adjacent to the merozoite nucleus in the intracellular phase, followed by the diffusion of the fluorescence of BoSBP4 into the cytoplasm of B. orientalis-infected erythrocytes as puncta-like specks and a gradual increase of the fluorescence. CONCLUSIONS: In this study, SBP4 in B. orientalis was characterized for the first time. It may play a key role in interaction with the host cell by being secreted into the cytoplasm of the B. orientalis-infected erythrocytes to facilitate parasite growth and reproduction.


Assuntos
Babesia/metabolismo , Eritrócitos/parasitologia , Genoma de Protozoário , Proteínas de Protozoários/metabolismo , Animais , Babesiose/sangue , Babesiose/parasitologia , Búfalos/sangue , Clonagem Molecular , Biologia Computacional , Modelos Moleculares , Filogenia , Conformação Proteica , Transporte Proteico , Proteínas de Protozoários/química
16.
Parasit Vectors ; 11(1): 205, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580261

RESUMO

BACKGROUND: The spherical body is a distinct organelle only existing in Babesia and Theileria. Spherical body proteins (SBPs) are secreted from spherical bodies and incorporated into the cytoplasm of infected erythrocytes during invasion and post-invasion stages. Four different SBP homologues (SBP1, SBP2, SBP3 and SBP4) have been identified in Babesia bovis and Babesia bigemina. So far, there has been no report available about the identification of SBPs in Babesia orientalis. METHODS: The SBP3-like in B. orientalis (BoSBP3-like) was cloned, sequenced, characterized and compared to the SBP3 sequences of B. bovis and B. bigemina by bioinformatics analyses. The BoSBP3-like gene was truncated into three fragments: BoSBP3-like-1 (915 bp), BoSBP3-like-2 (1311 bp) and BoSBP3-like-3 (1011 bp), which were amplified and cloned into the expression vector pET-28a and expressed as three truncated recombinant (His-fusion) proteins. The immunogenicity, native forms and localization of BoSBP3-like were identified by western blot and indirect immunofluorescence assay (IFA). RESULTS: The BoSBP3-like gene was intronless with an open reading frame (ORF) of 3237 bp, encoded a 1079 amino acid polypeptide with a predicted size of 135 kDa, and contained a cysteine-rich region, three dispersing FAINT domains and a signal peptide (1-16 aa) at the N-terminus. The amino acid sequence of BoSBP3-like was 61.6 and 35.0% identical to that of B. bovis and B. bigemina, respectively. BoSBP3-like was identified as 135 kDa in the parasite lysate by rabbit antiserum against the truncated recombinant BoSBP3-like-1 (rBoSBP3-like-1). Three specific bands corresponding to rBoSBP3-like-1 (1-305 aa, 43 kDa), rBoSBP3-like-2 (306-742 aa, 58 kDa) and rBoSBP3-like-3 (743-1079 aa, 52 kDa) were detected by reaction with serum from B. orientalis-infected buffalo. The BoSBP3-like was not only localized in the spherical body of B. orientalis but also in the cytoplasm of infected erythrocytes of buffalo as puncta-like protein specks at both single and paired parasite development stages. CONCLUSIONS: Through secretion into the cytoplasm of infected erythrocytes, BoSBP3-like may play a significant role in adaptation, interaction, and modification related to the host environment to benefit the growth and survival of Babesia. BoSBP3-like could react with the serum from B. orientalis-infected buffalo, but not healthy buffalo, implicating that BoSBP3-like is highly antigenic and may serve as a candidate diagnostic antigen for the detection of B. orientalis.


Assuntos
Babesia/metabolismo , Citoplasma/química , Citoplasma/parasitologia , Eritrócitos/química , Eritrócitos/parasitologia , Proteínas de Protozoários/metabolismo , Animais , Babesia/crescimento & desenvolvimento , Western Blotting , Búfalos , Clonagem Molecular , Biologia Computacional , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
17.
Sci Rep ; 7(1): 17082, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213094

RESUMO

Excessive long-term fluoride intake is associated with several health problems, including infertility. However, limited information is available on the toxic effects of fluoride exposure on the female reproductive system, especially oocyte maturation. In this study, we investigated the toxic effect of sodium fluoride (NaF) exposure on porcine oocyte maturation and its possible underlying mechanisms. Our results showed that NaF exposure during porcine oocyte maturation inhibited cumulus cell expansion and impaired polar body extrusion. Cell cycle analysis showed that NaF exposure blocked meiotic resumption, disturbed spindle dynamics, disrupted chromosome separation, and increased aneuploidy in porcine oocytes. Moreover, NaF exposure disturbed mitochondrial function, triggered DNA damage response, and induced early apoptosis in porcine oocytes. NaF exposure also induced oxidative stress, decreased GSH level, and increased cathepsin B activity in and impaired the further development potential of porcine oocytes, as indicated by a decrease in blastocyst formation rate, increase in apoptosis, and inhibition of cell proliferation. Together, these results indicate that NaF exposure impairs the maturation capacity of porcine oocytes by inhibiting cumulus cell expansion, disturbing cytoskeletal dynamics, and blocking nuclear and cytoplasmic maturation, thus decreasing the quality and affecting the subsequent embryonic development potential of porcine oocytes.


Assuntos
Oogênese/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Aneuploidia , Animais , Apoptose/efeitos dos fármacos , Catepsina B/metabolismo , Segregação de Cromossomos/efeitos dos fármacos , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Histonas/metabolismo , Meiose/efeitos dos fármacos , Oócitos/citologia , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Suínos
18.
Oncotarget ; 8(13): 20602-20611, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28206974

RESUMO

Caffeine, as an oocyte aging inhibitor, was used in many different species to control or delay oocyte aging. However, the safety of caffeine and developmental competence of aged oocytes inhibited by caffeine has not been studied systematically. So we detected the spindle morphology, distribution of cortical granules, zona pellucida hardening and pronucleus formation to assess oocyte quality of caffeine treated oocytes. We found that aged oocytes treated by caffeine maintained weak susceptibility to activating stimuli and regained normal competent after aged further 6 hr. Caffeine maintained the spindle morphology, changed cortical granules distribution of aged oocytes and could not prevent zona pellucida hardening. Furthermore, caffeine increased pronucleus formation of aged oocytes and decreased fragmentation after fertilization. These results suggested that caffeine could maintain the quality of aged oocytes safely in mouse.


Assuntos
Cafeína/farmacologia , Senescência Celular/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Animais , Feminino , Imunofluorescência , Camundongos
19.
Int J Clin Exp Pathol ; 8(5): 4745-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191164

RESUMO

MicroRNA-126 (miR-126) was found down-regulated in different types of cancer including esophageal squamous cell carcinoma (ESCC). However, the onco-genetic role of miR-126 in ESCC still remains unknown. In the present study, we found the relative expression of miR-126 in ESCC was significant decreased in ESCC tissues compared to adjacent normal tissues. Overexpression of miR-126 in EC109 cells resulted in significant decrease in cell proliferation, colon formation and migration. PI3K regulatory subunit p85 beta (PIK3R2), a member of PI3K/AKT signaling pathway was found upregulated in ESCC tissues and there is a negative relation between expression of PIK3R2 and miR-126. Restoration of miR-126 in EC109 cells induced a reduction in PIK3R2 protein levels, accompanied with a substantial reduction in phosphorylated AKT levels in EC109 cells, suggesting impairment in PI3K/AKT signaling pathway. The luciferase reporter assay confirmed that PIK3R2 was a direct target of miR-126. Furthermore, we also indicated overexpression of miR-126 suppresses G2/M transition in EC109 cells. Taken together, our study suggests that miR-126 functions as a potential tumor suppressor in ESCC progression via regulating PI3K/AKT signaling pathway partly by targeting PIK3R2, and targeting of miR-126 may provide a novel strategy for the diagnosis and treatment of ESCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , MicroRNAs/genética , Fosforilação , Transdução de Sinais/genética
20.
Neuroreport ; 25(6): 358-66, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24323123

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter synthesized from cysteine (Cys) by pyridoxal-5'-phosphate-dependent enzymes. We investigated the potential roles of H2S in the regulation of central rhythmic respiration in adult rats in vivo. Sodium hydrosulfide (NaHS: 2.5 mM, 10 mM, and 5 mM) as a source of exogenous H2S, Cys (2.5 mM, 10 mM and 5 mM) as a source of endogenous H2S, 2.5 mM Cys+10 mM hydroxylamine (NH2OH), and 10 mM NH2OH, respectively, were intracerebroventricularly injected into rats. The rhythmic discharge of the diaphragm, including burst duration (BD), burst interval (BI), burst frequency (BF), and integrated amplitude (IA), and arterial blood pressure (BP) were measured at different time points. The results were analyzed by analysis of variance. A total of 2.5 mM NaHS did not significantly affect changes in BD, BI, BF, IA, or BP (P>0.05), whereas 2.5 mM Cys significantly altered BD, BI, and BF (P<0.05); however, there was no change in IA and BP (P>0.05). A concentration of 5 mM Cys had effects similar to those of 5 mM NaHS; both induced biphasic respiratory responses and changed the BF (P<0.05). A concentration of 10 mM NH2OH irreversibly inhibited rhythmic discharge of the diaphragm except for IA. No change was seen in BI, BF, IA, or BP (P>0.05) except for BD was temporarily decreased (P<0.05) in the 2.5 mM Cys+10 mM NH2OH group. These results suggest that exogenous and endogenous H2S may participate in the regulation of respiratory activity in adult rats.


Assuntos
Pressão Arterial/efeitos dos fármacos , Cisteína/farmacologia , Diafragma/efeitos dos fármacos , Gasotransmissores/farmacologia , Sulfeto de Hidrogênio/farmacologia , Hidroxilamina/farmacologia , Respiração/efeitos dos fármacos , Sulfetos/farmacologia , Animais , Cisteína/administração & dosagem , Diafragma/cirurgia , Eletrodos Implantados , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Gasotransmissores/administração & dosagem , Hidroxilamina/administração & dosagem , Ventrículos Laterais/cirurgia , Masculino , Ratos , Ratos Sprague-Dawley , Sulfetos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA