Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047496

RESUMO

Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain-containing protein 3 inflammasomes, and increased IL-1ß formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.


Assuntos
Disfunção Cognitiva , Cloridrato de Fingolimode , Animais , Sistema Nervoso Central/metabolismo , Cisplatino/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Cloridrato de Fingolimode/farmacologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética
2.
Peptides ; 146: 170678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695512

RESUMO

Obesity-related metabolic dysregulation causes mild cognitive impairment and increased risk for dementia. We used an LDLR-deficient C57BL/6J mouse model (LDLRKO) to investigate whether adropin, a neuropeptide linked to neurodegenerative diseases, improves cognitive function in situations of metabolic dysregulation. Adropin transgenic mice (AdrTG) were crossed with LDLRKO; male and female progeny were fed a high fat diet for 3-months. Male chow-fed wild type (WT) mice were used as controls. Diet-induced obesity and LDLR-deficiency caused severe dyslipidemia, irrespective of sex. The AdrTG prevented reduced adropin protein levels in LDLRKO cortex. In males, metabolic dysregulation and AdrTG genotype significantly and bi-directionally affected performance in the novel object recognition (NOR) test, a declarative hippocampal memory task (discrimination index mean ± SE for WT, 0.02 ± 0.088; LDLRKO, -0.115 ± 0.077; AdrTG;LDLRKO, 0.265 ± 0.078; genotype effect, p = 0.009; LDLRKO vs. AdrTG;LDLRKO, P < 0.05). A 2-way ANOVA (fixed variables: sex, AdrTG genotype) indicated a highly significant effect of AdrTG (P = 0.003). The impact of the diet-genotype interaction on the male mouse brain was investigated using RNA-seq. Gene-ontology analysis of transcripts showing fold-changes of>1.3 or <-1.3 (P < 0.05) indicated metabolic dysregulation affected gene networks involved in intercellular/neuronal signaling, immune processes, angiogenesis, and extracellular matrix organization. The AdrTG selectively attenuated the impact of metabolic dysregulation on intercellular/neuronal signaling pathways. Intercellular/neuronal signaling pathways were also the predominant processes overrepresented when directly comparing AdrTG;LDLRKO with LDRKO. In summary, adropin overexpression improves cognitive function in severe metabolic dysregulation through pathways related to cell-cell communication and neuronal processes, and independently of preventing inflammatory responses.


Assuntos
Dieta , Técnicas de Transferência de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Memória , Obesidade/psicologia , Receptores de LDL/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia
3.
J Neuroinflammation ; 17(1): 339, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183330

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a common pathological condition that presently lacks a specific pharmacological treatment. Adenosine levels rise following TBI, which is thought to be neuroprotective against secondary brain injury. Evidence from stroke and inflammatory disease models suggests that adenosine signaling through the G protein-coupled A3 adenosine receptor (A3AR) can provide antiinflammatory and neuroprotective effects. However, the role of A3AR in TBI has not been investigated. METHODS: Using the selective A3AR agonist, MRS5980, we evaluated the effects of A3AR activation on the pathological outcomes and cognitive function in CD1 male mouse models of TBI. RESULTS: When measured 24 h after controlled cortical impact (CCI) TBI, male mice treated with intraperitoneal injections of MRS5980 (1 mg/kg) had reduced secondary tissue injury and brain infarction than vehicle-treated mice with TBI. These effects were associated with attenuated neuroinflammation marked by reduced activation of nuclear factor of kappa light polypeptide gene enhancer in B cells (NFκB) and MAPK (p38 and extracellular signal-regulated kinase (ERK)) pathways and downstream NOD-like receptor pyrin domain-containing 3 inflammasome activation. MRS5980 also attenuated TBI-induced CD4+ and CD8+ T cell influx. Moreover, when measured 4-5 weeks after closed head weight-drop TBI, male mice treated with MRS5980 (1 mg/kg) performed significantly better in novel object-placement retention tests (NOPRT) and T maze trials than untreated mice with TBI without altered locomotor activity or increased anxiety. CONCLUSION: Our results provide support for the beneficial effects of small molecule A3AR agonists to mitigate secondary tissue injury and cognitive impairment following TBI.


Assuntos
Agonistas do Receptor A3 de Adenosina/administração & dosagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Transtornos Neurocognitivos/tratamento farmacológico , Transtornos Neurocognitivos/metabolismo , Receptor A3 de Adenosina/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos/patologia
4.
PLoS One ; 15(9): e0238877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886731

RESUMO

BACKGROUND AND OBJECTIVE: A recent study identified progranulin as a candidate biomarker for frailty, based on gene expression databases. In the present study, we investigated associations between serum progranulin levels and frailty in a population-based sample of late middle-age and older adults. METHODS: We utilized a cohort study that included 358 African Americans (baseline ages 49-65). Frailty was assessed by three established methods: the interview-based FRAIL scale, the Cardiovascular Health Study (CHS) frailty scale that includes performance-based measurements, and the Frailty Index (FI) that is based on cumulative deficits. Serum levels of the following proteins and metabolites were measured: progranulin, cystatin C, fructosamine, soluble cytokine receptors (interleukin-2 and -6, tumor necrosis factor α-1 and -2), and C-reactive protein. Sarcopenia was assessed using the SARC-F index. Vital status was determined by matching through the National Death Index (NDI). RESULTS: Serum progranulin levels were associated with frailty for all indices (FRAIL, CHS, and FI) but not with sarcopenia. Inflammatory markers indicated by soluble cytokine receptors (sIL-2R, sIL-6R, sTNFR1, sTNFR2) were positively associated serum progranulin. Increased serum progranulin levels at baseline predicted poorer outcomes including future frailty as measured by the FRAIL scale and 15-year all-cause mortality independent of age, gender, and frailty. CONCLUSIONS: Our findings suggest that serum progranulin levels may be a candidate biomarker for physical frailty, independent of sarcopenia. Further studies are needed to validate this association and assess the utility of serum progranulin levels as a potential biomarker for prevalent frailty, for risk for developing incident frailty, and for mortality risk over and above the effect of baseline frailty.


Assuntos
Biomarcadores/sangue , Fragilidade/metabolismo , Progranulinas/sangue , Proteína C-Reativa/análise , Estudos de Coortes , Cistatina C/sangue , Feminino , Frutosamina/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Citocinas/sangue
5.
J Biol Chem ; 295(40): 13753-13768, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32727846

RESUMO

The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 (Pck1) expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response.


Assuntos
Restrição Calórica , Jejum , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Fígado/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gluconeogênese/genética , Hepatócitos/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/citologia , Camundongos , Camundongos Knockout , Fosfoenolpiruvato Carboxiquinase (GTP)/biossíntese , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Transdução de Sinais/genética
6.
J Alzheimers Dis ; 28(1): 81-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21955812

RESUMO

Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-ß protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-ß protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.


Assuntos
Manteiga , Gorduras Insaturadas na Dieta/administração & dosagem , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Óleos de Plantas/administração & dosagem , Animais , Encéfalo/metabolismo , Óleo de Coco , Camundongos , Camundongos Mutantes , Azeite de Oliva , Estresse Oxidativo/fisiologia
7.
J Alzheimers Dis ; 28(4): 951-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22179572

RESUMO

The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-ß protein precursor (AßPP) and amyloid-ß (Aß) in the brain, memory impairment, and deficits in Aß removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AßPP can decrease AßPP expression and Aß production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 µg of AßPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AßPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aß(40). Our results show that AßPP antisense completely reverses a 30% age-associated increase in AßPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aß(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AßPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AßPP antisense and show a unique association between AßPP and LRP-1 expression in the SAMP8 mouse.


Assuntos
Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Oligonucleotídeos Antissenso/administração & dosagem , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Sistemas de Liberação de Medicamentos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Transgênicos , Receptores de LDL/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores
8.
Eur J Pharmacol ; 641(2-3): 128-34, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570588

RESUMO

Neurosteroids hold great promise for the treatment of diseases of the central nervous system (CNS). We compared the uptake by 11 brain regions and appearance in blood of tritium-labeled pregnenolone and progesterone after intranasal and intravenous (IV) injection. Both neurosteroids appeared in blood and brain after either method of administration, but with important differences in uptake. Bioavailability based on appearance in arterial serum showed that about 23% and 14% of the intranasal administered doses of pregnenolone and progesterone, respectively, entered the blood. Brain levels were about two fold lower after intranasal administration for the two neurosteroids. With intranasal administration, brain levels of the two steroids did not vary over time (2-120 min), whereas brain levels were higher early (10 min or less) after i.v. administration. With i.v. administration, uptake by brain regions did not vary, whereas the olfactory bulb, hippocampus, and hypothalamus had high uptake rates after intranasal administration. Intranasal administration of prenenolone improved memory, whereas progesterone decreased anxiety, thus demonstrating that therapeutic levels of neurosteroids can be delivered to the brain by intranasal administration. The neurosteroids were rapidly degraded after i.v. or intranasal delivery, but pregnenolone was more resistant to degradation in the brain after intranasal administration and in serum after i.v. administration. These results show that either the i.v. or intranasal routes of administration can deliver neurosteroids to blood and brain, but that the two routes have significant differences with intranasal administration favoring some brain regions.


Assuntos
Encéfalo/metabolismo , Pregnenolona/metabolismo , Pregnenolona/farmacocinética , Progesterona/metabolismo , Progesterona/farmacocinética , Administração Intranasal , Animais , Disponibilidade Biológica , Transporte Biológico , Encéfalo/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Injeções Intravenosas , Masculino , Camundongos , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Pregnenolona/administração & dosagem , Pregnenolona/sangue , Pregnenolona/farmacologia , Progesterona/administração & dosagem , Progesterona/sangue , Progesterona/farmacologia
9.
J Pharmacol Exp Ther ; 333(2): 478-90, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20118207

RESUMO

The hypothalamic melanocortin-4 receptor (MC4R) is a constituent of an important pathway regulating food intake and energy expenditure. We produced a monoclonal antibody (mAb) directed against the N-terminal domain of the MC4R and evaluated its potential as a possible therapeutic agent. This mAb (1E8a) showed specific binding to the MC4R in human embryonic kidney 293 cells expressing the human MC4R and blocked the activity of the MC4R under basal conditions and after stimulation with alpha-melanocyte-stimulating hormone (alpha-MSH). The inverse agonist action of Agouti-related protein was significantly enhanced in the presence of mAb 1E8a. After a single intracerebroventricular injection into the third ventricle, mAb 1E8a (1 microg) increased 24-h food intake in rats. After 7 days of continuous intracerebroventricular administration, mAb 1E8a increased food intake, body weight, and fat pad weight and induced hyperglycemia. Because the complete mAb was ineffective after intravenous injection, we produced single-chain variable fragments (scFvs) derived from mAb 1E8a. In pharmacokinetic studies it was demonstrated that these scFvs crossed the blood-brain barrier and reached the hypothalamus. Consequently, the scFv 1E8a increased significantly food intake and body weight in rats after intravenous administration (300 mug/kg). The pharmacological profile of mAb 1E8a and the fact that its scFv was active after peripheral administration suggest that derivatives of anti-MC4R mAbs may be useful in the treatment of patients with anorexia or cachexia.


Assuntos
Anticorpos Monoclonais/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Barreira Hematoencefálica/metabolismo , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Linhagem Celular , Imunofluorescência , Humanos , Região Variável de Imunoglobulina/imunologia , Injeções Intravenosas , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL/imunologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/imunologia , Ressonância de Plasmônio de Superfície
10.
J Cereb Blood Flow Metab ; 29(2): 411-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19002200

RESUMO

By isolating for the first time ever a peptide transporter from the blood-brain barrier (BBB) and developing an antisense that selectively targets the brain-to-blood efflux component, we were able to deliver a therapeutic concentration of the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) 27 to brain in animal models of Alzheimer's and stroke. Efflux pumps at the BBB are major causes of BBB impermeability to peptides. PACAP is neuroprotective in vitro in femtomole amounts, but brain uptake of PACAP27 is limited by an efflux component of peptide transport system-6 (PTS-6). Here, we characterized, isolated, and sequenced this component of PTS-6, identifying it as beta-F1 ATPase, and colocalized it with PACAP27 on BBB endothelial cells. Antisenses targeting the BBB inhibited PACAP27 efflux, thus increasing brain uptake of PACAP27. Treatment with antisense+PACAP27 improved cognition in a mouse model of Alzheimer's disease and reduced infarct size after cerebral ischemia. This represents the first isolation from BBB tissue of a peptide transporter and shows that inhibition of peptide efflux pumps is a potential strategy for drug delivery to brain.


Assuntos
Doença de Alzheimer/enzimologia , Encéfalo/enzimologia , Células Endoteliais/enzimologia , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/metabolismo , Oligonucleotídeos Antissenso/genética , Acidente Vascular Cerebral/enzimologia , Adenosina Trifosfatases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Modelos Animais de Doenças , Terapia Genética , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ligação Proteica , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
11.
Brain Res ; 1116(1): 215-21, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16942756

RESUMO

A significant co-morbidity of Alzheimer's disease and cerebrovascular impairment suggests that cerebrovascular dysregulation is an important feature of dementia. Amyloid beta protein (Abeta), a relevant risk factor in Alzheimer's disease, has neurotoxic properties and is thought to play a critical role in the cognitive impairments. Previously, we demonstrated that the 42mer of Abeta (Abeta42) complexed with aluminum (Al-Abeta42) is much more cytotoxic than non-complexed Abeta42. The level of Abeta in the brain is a balance between synthesis, degradation, and fluxes across the blood-brain barrier (BBB). In the present paper, we determined whether complexing with aluminum affected the ability of radioactively iodinated Abeta to cross the in vivo BBB. We found that the rates of uptake of Al-Abeta42 and Abeta42 were similar, but that Al-Abeta42 was sequestered by brain endothelial cells much less than Abeta42 and so more readily entered the parenchymal space of the brain. Al-Abeta42 also had a longer half-life in blood and had increased permeation at the striatum and thalamus. Brain-to-blood transport was similar for Al-Abeta42 and Abeta42. In conclusion, complexing with aluminum affects some aspects of blood-to-brain permeability so that Al-Abeta42 would have more ready access to brain cells than Abeta42.


Assuntos
Alumínio/farmacologia , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Algoritmos , Alumínio/química , Aminoácidos/metabolismo , Animais , Meia-Vida , Humanos , Cinética , Camundongos , Camundongos Endogâmicos ICR , Análise de Regressão
12.
Bioconjug Chem ; 16(4): 793-802, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16029020

RESUMO

There is a tremendous need to enhance delivery of therapeutic polypeptides to the brain to treat disorders of the central nervous system (CNS). The brain delivery of many polypeptides is severely restricted by the blood-brain barrier (BBB). The present study demonstrates that point modifications of a BBB-impermeable polypeptide, horseradish peroxidase (HRP), with lipophilic (stearoyl) or amphiphilic (Pluronic block copolymer) moieties considerably enhance the transport of this polypeptide across the BBB and accumulation of the polypeptide in the brain in vitro and in vivo. The enzymatic activity of the HRP was preserved after the transport. The modifications of the HRP with amphiphilic block copolymer moieties through degradable disulfide links resulted in the most effective transport of the HRP across in vitro brain microvessel endothelial cell monolayers and efficient delivery of HRP to the brain. Stearoyl modification of HRP improved its penetration by about 60% but also increased the clearance from blood. Pluronic modification using increased penetration of the BBB and had no significant effect on clearance so that uptake by brain was almost doubled. These results show that point modification can improve delivery of even highly impermeable polypeptides to the brain.


Assuntos
Encéfalo/metabolismo , Ácidos Graxos/administração & dosagem , Peptídeos/química , Polímeros/química , Animais , Barreira Hematoencefálica , Bovinos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ácidos Graxos/química , Ácidos Graxos/farmacocinética , Meia-Vida , Masculino , Camundongos , Micelas
13.
J Pharmacol Exp Ther ; 302(3): 1062-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12183664

RESUMO

Secretin is a gastrointestinal peptide belonging to the vasoactive intestinal peptide (VIP)/glucagon/pituitary adenylate cyclase-activating polypeptide (PACAP) family recently suggested to have therapeutic effects in autism. A direct effect on brain would require secretin to cross the blood-brain barrier (BBB), an ability other members of the VIP/PACAP family have. Herein, we examined whether a secretin analog (SA) radioactively labeled with (131)I (I-SA) could cross the BBB of 4-week-old mice. We found I-SA was rapidly cleared from serum with fragments not precipitating with acid appearing in brain and serum. Levels of radioactivity were corrected to reflect only intact I-SA as estimated by acid precipitation. After i.v. injection, I-SA was taken up by brain at a modest rate of 0.9 to 1.5 microl/g-mm. Capillary depletion, brain perfusion, and high-performance liquid chromatography were used to confirm the passage of intact I-SA across the BBB. I-SA entered every brain region, with the highest uptake into the hypothalamus and cerebrospinal fluid (CSF). Unlabeled SA (10 microg/mouse) did not inhibit uptake by brain but did inhibit clearance from blood and uptake by the CSF, colon, kidney, and liver. The decreased clearance of I-SA from blood increased the percentage of the i.v. injected dose taken up per brain (%Inj/g) from about 0.118 to 0.295%Inj/g. In conclusion, SA crosses the vascular barrier by a nonsaturable process and the choroid plexus by a saturable process in amounts that for other members of its family produce central nervous system (CNS) effects. This passage provides a pathway through which peripherally administered SA could affect the CNS.


Assuntos
Barreira Hematoencefálica/fisiologia , Secretina/análogos & derivados , Secretina/farmacocinética , Algoritmos , Animais , Permeabilidade Capilar , Cromatografia Líquida de Alta Pressão , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos ICR , Análise de Regressão , Secretina/líquido cefalorraquidiano , Solubilidade , Solventes , Distribuição Tecidual
14.
J Appl Physiol (1985) ; 93(1): 161-6, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12070200

RESUMO

Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.


Assuntos
Dieta , Elevação dos Membros Posteriores/fisiologia , Imunidade Celular/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Corticosterona/metabolismo , Citocinas/metabolismo , Feminino , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Baço/citologia , Baço/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA