Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 11(2)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678127

RESUMO

Cell migration exerts a pivotal role in tumor progression, underlying cell invasion and metastatic spread. The cell migratory program requires f-actin re-organization, generally coordinated with the assembly of focal adhesions. Ion channels are emerging actors in regulating cell migration, through different mechanisms. We studied the role of the voltage dependent potassium channel KV 11.1 on cell migration of pancreatic ductal adenocarcinoma (PDAC) cells, focusing on its effects on f-actin organization and dynamics. Cells were cultured either on fibronectin (FN) or on a desmoplastic matrix (DM) with the addition of a conditioned medium produced by pancreatic stellate cells (PSC) maintained in hypoxia (Hypo-PSC-CM), to better mimic the PDAC microenvironment. KV11.1 was essential to maintain stress fibers in a less organized arrangement in cells cultured on FN. When PDAC cells were cultured on DM plus Hypo-PSC-CM, KV11.1 activity determined the organization of cortical f-actin into sparse and long filopodia, and allowed f-actin polymerization at a high speed. In both conditions, blocking KV11.1 impaired PDAC cell migration, and, on cells cultured onto FN, the effect was accompanied by a decrease of basal intracellular Ca2+ concentration. We conclude that KV11.1 is implicated in sustaining pro-metastatic signals in pancreatic cancer, through a reorganization of f-actin in stress fibers and a modulation of filopodia formation and dynamics.

2.
Cell Physiol Biochem ; 45(6): 2560-2576, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558744

RESUMO

BACKGROUND/AIMS: The peptide hormone angiotensin II (ATII) plays a prominent role in regulating vasoconstriction and blood pressure. Its primary target is the angiotensin II receptor type 1 (AT1), the stimulation of which induces an increase in cytosolic [Ca2+] and calmodulin activation. Ca2+-bound (activated) calmodulin stimulates the activity of the Na+/ H+ exchanger isoform 1 (NHE1); and increased NHE1 activity is known to promote melanoma cell motility. The competitive AT1 receptor inhibitor losartan is often used to lower blood pressure in hypertensive patients. Since AT1 mediates ATII-stimulated NHE1 activity, we set out to investigate whether ATII and losartan have an impact on NHE1-dependent behavior of human melanoma (MV3) cells. METHODS: ATII receptor expression was verified by PCR, F-actin was visualized using fluorescently labeled phalloidin, and cytosolic [Ca2+] and pH were determined ratiometrically using Fura-2 and BCECF, respectively. MV3 cell behavior was analyzed using migration, adhesion, invasion and proliferation assays. RESULTS: MV3 cells express both AT1 and the angiotensin II receptor type 2 (AT2). Stimulation of MV3 cells with ATII increased NHE1 activity which could be counteracted by both losartan and the Ca2+/ calmodulin inhibitor ophiobolin-A. ATII stimulation induced a decrease in MV3 cell migration and a more spherical cell morphology accompanied by an increase in the density of F-actin. Independently of the presence of ATII, both NHE1 and migratory activity were reduced when AT1 was blocked by losartan. On the other hand, losartan clearly increased cell adhesion to, and the invasion of, a collagen type I substrate. The AT2 inhibitor PD123319 did not affect NHE1 activity, proliferation and migration, but increased adhesion and invasion. CONCLUSION: Losartan inhibits NHE1 activity and the migration of human melanoma cells. At the same time, losartan promotes MV3 cell adhesion and invasion. The therapeutic use of AT1 antagonists (sartans) in hypertensive cancer patients should therefore be given critical consideration.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Movimento Celular/efeitos dos fármacos , Losartan/farmacologia , Melanoma/tratamento farmacológico , Invasividade Neoplásica/prevenção & controle , Trocador 1 de Sódio-Hidrogênio/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Melanoma/patologia , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle
3.
Pflugers Arch ; 469(12): 1567-1577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28849300

RESUMO

Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6-/- mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6-/- PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6-/- PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.


Assuntos
Células Estreladas do Pâncreas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Canal de Cátion TRPC6 , Microambiente Tumoral/fisiologia
4.
Oncotarget ; 8(1): 769-784, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27903970

RESUMO

Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all "hallmarks of cancer" such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of KCa3.1 channels in PSCs. KCa3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of KCa3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of KCa3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2+ concentration ([Ca2+]i). KCa3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca2+]i and calpain activity. KCa3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of KCa3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology.


Assuntos
Canais Iônicos/genética , Canais Iônicos/metabolismo , Células Estreladas do Pâncreas/metabolismo , Animais , Cálcio/metabolismo , Carcinoma Ductal Pancreático , Linhagem Celular Tumoral , Movimento Celular/genética , Quimiotaxia/genética , Expressão Gênica , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Camundongos , Camundongos Knockout , Neoplasias Pancreáticas , Células Estreladas do Pâncreas/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Neoplasias Pancreáticas
5.
Eur Biophys J ; 45(7): 657-670, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27670661

RESUMO

The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.


Assuntos
Células Estreladas do Pâncreas/metabolismo , Pressão , Canais de Cátion TRPC/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Cálcio/metabolismo , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPC/deficiência , Canais de Cátion TRPC/genética
6.
J Cardiovasc Electrophysiol ; 23(10): 1092-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22882672

RESUMO

INTRODUCTION: Sudden unexplained death account for one-third of all sudden natural deaths in the young (1-35 years). Hitherto, the prevalence of genopositive cases has primarily been based on deceased persons referred for postmortem genetic testing. These deaths potentially may represent the worst of cases, thus possibly overestimating the prevalence of potentially disease causing mutations in the 3 major long-QT syndrome (LQTS) genes in the general population. We therefore wanted to investigate the prevalence of mutations in an unselected population of sudden unexplained deaths in a nationwide setting. METHODS: DNA for genetic testing was available for 44 cases of sudden unexplained death in Denmark in the period 2000-2006 (equaling 33% of all cases of sudden unexplained death in the age group). KCNQ1, KCNH2, and SCN5A were sequenced and in vitro electrophysiological studies were performed on novel mutations. RESULTS: In total, 5 of 44 cases (11%) carried a mutation in 1 of the 3 genes corresponding to 11% of all investigated cases (R190W KCNQ1, F29L KCNH2 (2 cases), P297S KCNH2 and P1177L SCN5A). P1177L SCN5A has not been reported before. In vitro electrophysiological studies of P1177L SCN5A revealed an increased sustained current suggesting a LQTS phenotype. CONCLUSION: In a nationwide setting, the genetic investigation of an unselected population of sudden unexplained death cases aged 1-35 years finds a lower than expected number of mutations compared to referred populations previously reported. We therefore conclude that the prevalence of mutations in the 3 major LQTS associated genes may not be as abundant as previously estimated.


Assuntos
Morte Súbita Cardíaca/etiologia , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adolescente , Adulto , Fatores Etários , Análise de Variância , Autopsia , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Morte Súbita Cardíaca/epidemiologia , Dinamarca , Canal de Potássio ERG1 , Técnicas Eletrofisiológicas Cardíacas , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Frequência do Gene , Predisposição Genética para Doença , Células HEK293 , Humanos , Lactente , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/mortalidade , Masculino , Potenciais da Membrana , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Linhagem , Fenótipo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/mortalidade , Transfecção , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA