Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 174: 38-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372279

RESUMO

Cardiac fibrosis is regulated by the activation and phenotypic switching of quiescent cardiac fibroblasts to active myofibroblasts, which have extracellular matrix (ECM) remodeling and contractile functions which play a central role in cardiac remodeling in response to injury. Here, we show that expression and activity of the RNA binding protein HuR is increased in cardiac fibroblasts upon transformation to an active myofibroblast. Pharmacological inhibition of HuR significantly blunts the TGFß-dependent increase in ECM remodeling genes, total collagen secretion, in vitro scratch closure, and collagen gel contraction in isolated primary cardiac fibroblasts, suggesting a suppression of TGFß-induced myofibroblast activation upon HuR inhibition. We identified twenty-four mRNA transcripts that were enriched for HuR binding following TGFß treatment via photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). Eleven of these HuR-bound mRNAs also showed significant co-expression correlation with HuR, αSMA, and periostin in primary fibroblasts isolated from the ischemic-zone of infarcted mouse hearts. Of these, WNT1-inducible signaling pathway protein-1 (Wisp1; Ccn4), was the most significantly associated with HuR expression in fibroblasts. Accordingly, we found Wisp1 expression to be increased in cardiac fibroblasts isolated from the ischemic-zone of mouse hearts following ischemia/reperfusion, and confirmed Wisp1 expression to be HuR-dependent in isolated fibroblasts. Finally, addition of exogenous recombinant Wisp1 partially rescued myofibroblast-induced collagen gel contraction following HuR inhibition, demonstrating that HuR-dependent Wisp1 expression plays a functional role in HuR-dependent MF activity downstream of TGFß. In conclusion, HuR activity is necessary for the functional activation of primary cardiac fibroblasts in response to TGFß, in part through post-transcriptional regulation of Wisp1.


Assuntos
Proteínas de Sinalização Intercelular CCN , Proteína Semelhante a ELAV 1 , Miofibroblastos , Fator de Crescimento Transformador beta , Animais , Camundongos , Colágeno/metabolismo , Fibroblastos/metabolismo , Coração , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 321(1): H228-H241, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34018851

RESUMO

Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.


Assuntos
Adipócitos/metabolismo , Cardiomegalia/genética , Proteína Semelhante a ELAV 1/genética , Miocárdio/metabolismo , Adipócitos/patologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteína Semelhante a ELAV 1/metabolismo , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Camundongos , Camundongos Knockout , Miocárdio/patologia
3.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30668549

RESUMO

RNA binding proteins represent an emerging class of proteins with a role in cardiac dysfunction. We show that activation of the RNA binding protein human antigen R (HuR) is increased in the failing human heart. To determine the functional role of HuR in pathological cardiac hypertrophy, we created an inducible cardiomyocyte-specific HuR-deletion mouse and showed that HuR deletion reduces left ventricular hypertrophy, dilation, and fibrosis while preserving cardiac function in a transverse aortic constriction (TAC) model of pressure overload-induced hypertrophy. Assessment of HuR-dependent changes in global gene expression suggests that the mechanistic basis for this protection occurs through a reduction in fibrotic signaling, specifically through a reduction in TGF-ß (Tgfb) expression. Finally, pharmacological inhibition of HuR at a clinically relevant time point following the initial development of pathological hypertrophy after TAC also yielded a significant reduction in pathological progression, as marked by a reduction in hypertrophy, dilation, and fibrosis and preserved function. In summary, this study demonstrates a functional role for HuR in the progression of pressure overload-induced cardiac hypertrophy and establishes HuR inhibition as a viable therapeutic approach for pathological cardiac hypertrophy and heart failure.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Insuficiência Cardíaca/patologia , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Miocárdio/patologia , Animais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA-Seq , Remodelação Ventricular/efeitos dos fármacos
4.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29653926

RESUMO

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Assuntos
Fibronectinas/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Quinase 1 de Adesão Focal/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Integrina beta1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fosforilação , Polimerização , Transdução de Sinais/efeitos dos fármacos
5.
Biomed Res Int ; 2015: 251598, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064889

RESUMO

Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.


Assuntos
Doença de Darier/genética , Haploinsuficiência/genética , Insuficiência Cardíaca/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Doença de Darier/complicações , Doença de Darier/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Coração/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Humanos , Queratinócitos , Camundongos , Camundongos Transgênicos
6.
J Mol Cell Cardiol ; 77: 53-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280781

RESUMO

The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica/enzimologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Tropomiosina/genética , Animais , Cardiomiopatia Hipertrófica/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Inativação de Genes , Frequência Cardíaca , Masculino , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Tropomiosina/metabolismo , Pressão Ventricular
7.
Am J Physiol Heart Circ Physiol ; 304(8): H1147-58, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23436327

RESUMO

The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using ß-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function.


Assuntos
Hormônio Adrenocorticotrópico/efeitos adversos , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Disfunção Ventricular Esquerda/metabolismo , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Técnicas de Inativação de Genes/métodos , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , Integrases , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/análise , ATPase Trocadora de Sódio-Potássio/genética , Ultrassonografia , Vasoconstrição , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/genética
8.
Am J Physiol Heart Circ Physiol ; 301(4): H1396-404, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21856916

RESUMO

The α(2)-isoform of Na,K-ATPase (α(2)) is thought to play a role in blood pressure regulation, but the specific cell type(s) involved have not been identified. Therefore, it is important to study the role of the α(2) in individual cell types in the cardiovascular system. The present study demonstrates the role of vascular smooth muscle α(2) in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model utilizing the Cre/LoxP system to generate a cell type-specific knockout of the α(2) in vascular smooth muscle cells using the SM22α Cre. We achieved a 90% reduction in the α(2)-expression in heart and vascular smooth muscle in the knockout mice. Interestingly, tail-cuff blood pressure analysis reveals that basal systolic blood pressure is unaffected by the knockout of α(2) in the knockout mice. However, knockout mice do fail to develop ACTH-induced hypertension, as seen in wild-type mice, following 5 days of treatment with ACTH (Cortrosyn; wild type = 119.0 ± 6.8 mmHg; knockout = 103.0 ± 2.0 mmHg). These results demonstrate that α(2)-expression in heart and vascular smooth muscle is not essential for regulation of basal systolic blood pressure, but α(2) is critical for blood pressure regulation under chronic stress such as ACTH-induced hypertension.


Assuntos
Hormônio Adrenocorticotrópico , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Sistema Cardiovascular/enzimologia , Hipertensão/genética , Hipertensão/prevenção & controle , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Western Blotting , Cardiomegalia/metabolismo , Fenômenos Fisiológicos Cardiovasculares/genética , Separação Celular , Hipertensão/induzido quimicamente , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microssomos/metabolismo , Proteínas Musculares/metabolismo , Mutagênese Insercional , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/fisiologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/fisiologia , Recombinação Genética , Fluxo Sanguíneo Regional/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPase Trocadora de Sódio-Potássio/genética , Resistência Vascular/fisiologia
9.
Am J Physiol Renal Physiol ; 301(3): F615-21, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21632957

RESUMO

Endogenous cardiotonic steroids, through their interaction with the ouabain-binding site of the Na-K-ATPase α-subunit, have been implicated in a variety of cardiovascular disease states including hypertension. We have previously shown that ACTH-induced hypertension is abolished in mutant mice expressing ouabain-resistant α1- and α2-subunits. To further evaluate hypertension resistance in these mutant mice, we examined blood pressure changes in a modified model of 2-kidney, 1-clip (2K1C) renovascular hypertension. To reliably generate 2K1C hypertension, we used polyvinyl tubing (inner diameter: ∼0.27 mm) to accurately gauge the degree of renal artery stenosis. Using this method, virtually all of the clipped mice became hypertensive and there was no incidence of apparent renal ischemia. By telemetry, in response to renal artery clipping, blood pressure in wild-type mice (α1 ouabain-resistant, α2 ouabain-sensitive) increased from 97 ± 3 to 136 ± 7 mmHg. In α1-resistant, α2-resistant mice, pressure increased from 93 ± 2 to 123 ± 4 mmHg, and in α1-sensitive, α2-resistant mice, blood pressure increased from 95 ± 2 to 139 ± 5 mmHg. Blood pressure changes were equivalent in all three groups. In sham mice, blood pressure did not change (96 ± 1 to 95 ± 2 mmHg). Renin mRNA expression was dramatically elevated in the left vs. the right kidney, and plasma renin concentration was elevated similarly in all genotypes. These data indicate that sensitivity of the α1- or α2-Na-K-ATPase binding site to cardiotonic steroids is not a prerequisite for the development of 2K1C renovascular hypertension. In addition, use of a polyurethane cuff to constrict the renal artery provides a reliable method for producing 2K1C hypertension in mice.


Assuntos
Hipertensão Renovascular/etiologia , Hipertensão Renovascular/fisiopatologia , Rim/fisiopatologia , Ouabaína/metabolismo , Subunidades Proteicas/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Instrumentos Cirúrgicos/efeitos adversos , Animais , Sítios de Ligação/fisiologia , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Feminino , Rim/irrigação sanguínea , Rim/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Poliuretanos , Ligação Proteica/fisiologia , Artéria Renal/fisiopatologia
10.
Am J Physiol Heart Circ Physiol ; 286(3): H1146-53, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14630633

RESUMO

We recently developed a mouse model with a single functional allele of Serca2 (Serca2+/-) that shows impaired cardiac contractility and relaxation without overt heart disease. The goal of this study was to test the hypothesis that chronic reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2 levels in combination with an increased hemodynamic load will result in an accelerated pathway to heart failure. Age-matched wild-type and Serca2+/- mice were subjected to 10 wk of pressure overload via transverse aortic coarctation surgery. Cardiac hypertrophy and heart failure were assessed by echocardiography, gravimetry/histology, hemodynamics, and Western blotting analyses. Our results showed that approximately 64% of coarcted Serca2+/- mice were in heart failure compared with 0% of coarcted wild-type mice (P < 0.05). Overall, morbidity and mortality were greatly increased in Serca2+/- mice under pressure overload. Echocardiography assessment revealed a significant increase in left ventricular (LV) mass, and LV hypertrophy in coarcted Serca2+/- mice converted from a concentric to an eccentric pattern, similar to that seen in human heart failure. Coarcted Serca2+/- mice had decreased contractile/systolic and relaxation/diastolic performance and/or function compared with coarcted wild-type mice (P < 0.05), despite a similar duration and degree of pressure overload. SERCA2a protein levels were significantly reduced (>50%) in coarcted Serca2+/- mice compared with noncoarcted and coarcted wild-type mice. Our findings suggest that reduction in SERCA2 levels in combination with an increased hemodynamic load results in an accelerated pathway to heart failure.


Assuntos
ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Animais , Cálcio/metabolismo , Cateterismo Cardíaco , Diástole , Ecocardiografia , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Sístole
11.
Am J Physiol Heart Circ Physiol ; 283(3): H958-65, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12181124

RESUMO

In this study we evaluated the contractile characteristics of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)1a-expressing hearts ex vivo and in vivo and in particular their response to beta-adrenergic stimulation. Analysis of isolated, work-performing hearts revealed that transgenic (TG) hearts develop much higher maximal rates of contraction and relaxation than wild-type (WT) hearts. Addition of isoproterenol only moderately increased the maximal rate of relaxation (+20%) but did not increase contractility or decrease relaxation time in TG hearts. Perfusion with varied buffer Ca(2+) concentrations indicated an altered dose response to Ca(2+). In vivo TG hearts displayed fairly higher maximal rates of contraction (+ 25%) but unchanged relaxation parameters and a blunted but significant response to dobutamine. Our study also shows that the phospholamban (PLB) level was decreased (-40%) and its phosphorylation status modified in TG hearts. This study clearly demonstrates that increases in SERCA protein level alter the beta-adrenergic response and affect the phosphorylation of PLB. Interestingly, the overall cardiac function in the live animal is only slightly enhanced, suggesting that (neuro)hormonal regulations may play an important role in controlling in vivo heart function.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , ATPases Transportadoras de Cálcio/metabolismo , Isoproterenol/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Animais , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/genética , Dobutamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica/fisiologia , Fosforilação , Receptores Adrenérgicos beta/metabolismo , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA