Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(40): e2122382119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161959

RESUMO

Fibroblast growth factor 1 (FGF1) is an autocrine growth factor released from adipose tissue during over-nutrition or fasting to feeding transition. While local actions underlie the majority of FGF1's anti-diabetic functions, the molecular mechanisms downstream of adipose FGF receptor signaling are unclear. We investigated the effects of FGF1 on glucose uptake and its underlying mechanism in murine 3T3-L1 adipocytes and in ex vivo adipose explants from mice. FGF1 increased glucose uptake in 3T3-L1 adipocytes and epididymal WAT (eWAT) and inguinal WAT (iWAT). Conversely, glucose uptake was reduced in eWAT and iWAT of FGF1 knockout mice. We show that FGF1 acutely increased adipocyte glucose uptake via activation of the insulin-sensitive glucose transporter GLUT4, involving dynamic crosstalk between the MEK1/2 and Akt signaling proteins. Prolonged exposure to FGF1 stimulated adipocyte glucose uptake by MEK1/2-dependent transcription of the basal glucose transporter GLUT1. We have thus identified an alternative pathway to stimulate glucose uptake in adipocytes, independent from insulin, which could open new avenues for treating patients with type 2 diabetes.


Assuntos
Adipócitos , Fator 1 de Crescimento de Fibroblastos , Glucose , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-26834701

RESUMO

The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA