Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Rev Mol Med ; 18: e3, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26953528

RESUMO

The GATA family of transcription factors consists of six proteins (GATA1-6) which are involved in a variety of physiological and pathological processes. GATA1/2/3 are required for differentiation of mesoderm and ectoderm-derived tissues, including the haematopoietic and central nervous system. GATA4/5/6 are implicated in development and differentiation of endoderm- and mesoderm-derived tissues such as induction of differentiation of embryonic stem cells, cardiovascular embryogenesis and guidance of epithelial cell differentiation in the adult.


Assuntos
Endoderma/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Neoplasias/genética , Animais , Sistema Cardiovascular/crescimento & desenvolvimento , Sistema Cardiovascular/metabolismo , Diferenciação Celular , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/crescimento & desenvolvimento , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fatores de Transcrição GATA/metabolismo , Sistema Hematopoético/crescimento & desenvolvimento , Sistema Hematopoético/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Transdução de Sinais
2.
PLoS One ; 10(4): e0118840, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853770

RESUMO

Although the MK3 gene was originally found deleted in some cancers, it is highly expressed in others. The relevance of MK3 for oncogenesis is currently not clear. We recently reported that MK3 controls ERK activity via a negative feedback mechanism. This prompted us to investigate a potential role for MK3 in cell proliferation. We here show that overexpression of MK3 induces a proliferative arrest in normal diploid human fibroblasts, characterized by enhanced expression of replication stress- and senescence-associated markers. Surprisingly, MK3 depletion evokes similar senescence characteristics in the fibroblast model. We previously identified MK3 as a binding partner of Polycomb Repressive Complex 1 (PRC1) proteins. In the current study we show that MK3 overexpression results in reduced cellular EZH2 levels and concomitant loss of epigenetic H3K27me3-marking and PRC1/chromatin-occupation at the CDKN2A/INK4A locus. In agreement with this, the PRC1 oncoprotein BMI1, but not the PCR2 protein EZH2, bypasses MK3-induced senescence in fibroblasts and suppresses P16INK4A expression. In contrast, BMI1 does not rescue the MK3 loss-of-function phenotype, suggesting the involvement of multiple different checkpoints in gain and loss of MK3 function. Notably, MK3 ablation enhances proliferation in two different cancer cells. Finally, the fibroblast model was used to evaluate the effect of potential tumorigenic MK3 driver-mutations on cell proliferation and M/SAPK signaling imbalance. Taken together, our findings support a role for MK3 in control of proliferation and replicative life-span, in part through concerted action with BMI1, and suggest that the effect of MK3 modulation or mutation on M/SAPK signaling and, ultimately, proliferation, is cell context-dependent.


Assuntos
Pontos de Checagem do Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases , Mutação , Proteínas do Grupo Polycomb/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
Cancer Prev Res (Phila) ; 8(2): 157-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25538088

RESUMO

Identifying biomarkers in body fluids may improve the noninvasive detection of colorectal cancer. Previously, we identified N-Myc downstream-regulated gene 4 (NDRG4) and GATA binding protein 5 (GATA5) methylation as promising biomarkers for colorectal cancer in stool DNA. Here, we examined the utility of NDRG4, GATA5, and two additional markers [Forkhead box protein E1 (FOXE1) and spectrin repeat containing nuclear envelope 1 (SYNE1)] promoter methylation as biomarkers in plasma DNA. Quantitative methylation-specific PCR was performed on plasma DNA from 220 patients with colorectal cancer and 684 noncancer controls, divided in a training set and a test set. Receiver operating characteristic analysis was performed to measure the area under the curve of GATA5, NDRG4, SYNE1, and FOXE1 methylation. Functional assays were performed in SYNE1 and FOXE1 stably transfected cell lines. The sensitivity of NDRG4, GATA5, FOXE1, and SYNE1 methylation in all stages of colorectal cancer (154 cases, 444 controls) was 27% [95% confidence interval (CI), 20%-34%), 18% (95% CI, 12%-24%), 46% (95% CI, 38%-54%), and 47% (95% CI, 39%-55%), with a specificity of 95% (95% CI, 93%-97%), 99% (95% CI, 98%-100%), 93% (95% CI, 91%-95%), and 96% (95% CI, 94%-98%), respectively. Combining SYNE1 and FOXE1, increased the sensitivity to 56% (95% CI, 48%-64%), while the specificity decreased to 90% (95% CI, 87%-93%) in the training set and to 58% sensitivity (95% CI, 46%-70%) and 91% specificity (95% CI, 80%-100%) in a test set (66 cases, 240 controls). SYNE1 overexpression showed no major differences in cell proliferation, migration, and invasion compared with controls. Overexpression of FOXE1 significantly decreased the number of colonies in SW480 and HCT116 cell lines. Overall, our data suggest that SYNE1 and FOXE1 are promising markers for colorectal cancer detection.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Fatores de Transcrição Forkhead/sangue , Proteínas do Tecido Nervoso/sangue , Proteínas Nucleares/sangue , Idoso , Área Sob a Curva , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Proteínas do Citoesqueleto , Metilação de DNA/genética , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Transfecção
4.
Radiother Oncol ; 111(2): 168-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24861629

RESUMO

Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy.


Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias/radioterapia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/efeitos da radiação , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Radiossensibilizantes/uso terapêutico
5.
Biochim Biophys Acta ; 1826(1): 89-102, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22503822

RESUMO

Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM.


Assuntos
Melanoma/genética , Neoplasias Cutâneas/genética , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , MicroRNAs/genética
6.
Clin Cancer Res ; 17(13): 4225-31, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558408

RESUMO

The genetic and epigenetic alterations that underlie cancer pathogenesis are rapidly being identified. This provides novel insights in tumor biology as well as in potential cancer biomarkers. The somatic mutations in cancer genes that have been implemented in clinical practice are well defined and very specific. For epigenetic alterations, and more specifically aberrant methylation of promoter CpG islands, evidence is emerging that these markers could be used for the early detection of cancer as well as prediction of prognosis and response to therapy. However, the exact location of biologically and clinically relevant hypermethylation has not been identified for the majority of methylation markers. The most widely used approaches to analyze DNA methylation are based on primer- and probe-based assays that provide information for a limited number of CpG dinucleotides and thus for only part of the information available in a given CpG island. Validation of the current data and implementation of hypermethylation markers in clinical practice require a more comprehensive and critical evaluation of DNA methylation and limitations of the techniques currently used in methylation marker research. Here, we discuss the emerging evidence on the importance of the location of CpG dinucleotide hypermethylation in relation to gene expression and associations with clinicopathologic characteristics in cancer.


Assuntos
Ilhas de CpG/genética , Metilação de DNA/genética , Neoplasias/genética , Regiões Promotoras Genéticas , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos
7.
Carcinogenesis ; 30(6): 1041-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329758

RESUMO

Chromosomal loss of 18q21 is a frequent event in colorectal cancer (CRC) development, suggesting that this region harbors tumor suppressor genes (TSGs). Several candidate TSGs, among which methyl-CpG-binding domain protein 1 (MBD1), CpG-binding protein CXXC1, Sma- and Mad-related protein 4 (SMAD4), deleted in colon cancer (DCC) and methyl-CpG-binding domain protein 2 (MBD2) are closely linked on a 4-Mb DNA region on chromosome18q21. As TSGs can be epigenetically silenced, this study investigates whether MBD1, CXXC1, SMAD4, DCC and MBD2 are subject to epigenetic silencing in CRC. Methylation-specific polymerase chain reaction and sodium bisulfite sequencing of these genes show that DCC, but not MBD1, CXXC1, SMAD4 and MBD2, has promoter CpG island methylation in CRC cell lines and tissues {normal mucosa [29.5% (18/61)], adenomas [81.0% (47/58)] and carcinomas [82.7% (62/75)] (P = 8.6 x 10(-9))} that is associated with reduced DCC expression, independent of 18q21 loss analyzed by multiplex ligation-dependent probe amplification. Reduced gene expression of CXXC1, SMAD4 and MBD2 correlates with 18q21 loss in CRC cell lines (P = 0.04, 0.02 and 0.02, respectively). Treatment with the demethylating agent 5-aza-2'-deoxycytidine, but not with the histone deacetylase inhibitor trichostatin A exclusively restored DCC expression in CRC cell lines. Chromatin immunoprecipitation studies reveal that the DCC promoter is marked with repressive histone-tail marks H3K9me3 and H3K27me3, whereas activity related H3K4me3 was absent. Only active epigenetic marks were detected for MBD1, CXXC1, SMAD4 and MBD2. This study demonstrates specific epigenetic silencing of DCC in CRC as a focal process not affecting neighboring genes on chromosomal region 18q21.


Assuntos
Cromossomos Humanos Par 18/metabolismo , Neoplasias do Colo/metabolismo , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Cromossomos Humanos Par 18/genética , Neoplasias do Colo/genética , Receptor DCC , Decitabina , Histonas/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Regiões Promotoras Genéticas , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA