Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 81, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095438

RESUMO

Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is essential for precision medicine. In this study, we developed interpretable predictive models for multi-omics data by employing neural networks informed by prior biological knowledge, referred to as visible networks. These neural networks offer insights into the decision-making process and can unveil novel perspectives on the underlying biological mechanisms associated with traits and complex diseases. We tested the performance, interpretability and generalizability for inferring smoking status, subject age and LDL levels using genome-wide RNA expression and CpG methylation data from the blood of the BIOS consortium (four population cohorts, Ntotal = 2940). In a cohort-wise cross-validation setting, the consistency of the diagnostic performance and interpretation was assessed. Performance was consistently high for predicting smoking status with an overall mean AUC of 0.95 (95% CI: 0.90-1.00) and interpretation revealed the involvement of well-replicated genes such as AHRR, GPR15 and LRRN3. LDL-level predictions were only generalized in a single cohort with an R2 of 0.07 (95% CI: 0.05-0.08). Age was inferred with a mean error of 5.16 (95% CI: 3.97-6.35) years with the genes COL11A2, AFAP1, OTUD7A, PTPRN2, ADARB2 and CD34 consistently predictive. For both regression tasks, we found that using multi-omics networks improved performance, stability and generalizability compared to interpretable single omic networks. We believe that visible neural networks have great potential for multi-omics analysis; they combine multi-omic data elegantly, are interpretable, and generalize well to data from different cohorts.


Assuntos
Redes Neurais de Computação , Fenótipo , Humanos , Estudos de Coortes , Metilação de DNA/genética , Masculino , Feminino , Pessoa de Meia-Idade , Fumar/genética , Genômica/métodos , Adulto , Biologia Computacional/métodos , Ilhas de CpG/genética , Idoso , Multiômica
2.
Acad Radiol ; 31(3): 870-879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37648580

RESUMO

RATIONALE AND OBJECTIVES: Distinguishing malignant from benign liver lesions based on magnetic resonance imaging (MRI) is an important but often challenging task, especially in noncirrhotic livers. We developed and externally validated a radiomics model to quantitatively assess T2-weighted MRI to distinguish the most common malignant and benign primary solid liver lesions in noncirrhotic livers. MATERIALS AND METHODS: Data sets were retrospectively collected from three tertiary referral centers (A, B, and C) between 2002 and 2018. Patients with malignant (hepatocellular carcinoma and intrahepatic cholangiocarcinoma) and benign (hepatocellular adenoma and focal nodular hyperplasia) lesions were included. A radiomics model based on T2-weighted MRI was developed in data set A using a combination of machine learning approaches. The model was internally evaluated on data set A through cross-validation, externally validated on data sets B and C, and compared to visual scoring of two experienced abdominal radiologists on data set C. RESULTS: The overall data set included 486 patients (A: 187, B: 98, and C: 201). The radiomics model had a mean area under the curve (AUC) of 0.78 upon internal validation on data set A and a similar AUC in external validation (B: 0.74 and C: 0.76). In data set C, the two radiologists showed moderate agreement (Cohen's κ: 0.61) and achieved AUCs of 0.86 and 0.82. CONCLUSION: Our T2-weighted MRI radiomics model shows potential for distinguishing malignant from benign primary solid liver lesions. External validation indicated that the model is generalizable despite substantial MRI acquisition protocol differences. Pending further optimization and generalization, this model may aid radiologists in improving the diagnostic workup of patients with liver lesions.


Assuntos
Neoplasias Hepáticas , Radiômica , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37027733

RESUMO

Augmented reality (AR) has shown potential in computer-aided surgery. It allows for the visualization of hidden anatomical structures as well as assists in navigating and locating surgical instruments at the surgical site. Various modalities (devices and/or visualizations) have been used in the literature, but few studies investigated the adequacy/superiority of one modality over the other. For instance, the use of optical see-through (OST) HMDs has not always been scientifically justified. Our goal is to compare various visualization modalities for catheter insertion in external ventricular drain and ventricular shunt procedures. We investigate two AR approaches: (1) 2D approaches consisting of a smartphone and a 2D window visualized through an OST (Microsoft HoloLens 2), and (2) 3D approaches consisting of a fully aligned patient model and a model that is adjacent to the patient and is rotationally aligned using an OST. 32 participants joined this study. For each visualization approach, participants were asked to perform five insertions after which they filled NASA-TLX and SUS forms. Moreover, the position and orientation of the needle with respect to the planning during the insertion task were collected. The results show that participants achieved a better insertion performance significantly under 3D visualizations, and the NASA-TLX and SUS forms reflected the preference of participants for these approaches compared to 2D approaches.

4.
Neuro Oncol ; 25(2): 279-289, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35788352

RESUMO

BACKGROUND: Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or histological features of glioma, or that can automatically delineate the tumor, but not both tasks at the same time. Here, we present our method that can predict the molecular subtype and grade, while simultaneously providing a delineation of the tumor. METHODS: We developed a single multi-task convolutional neural network that uses the full 3D, structural, preoperative MRI scans to predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor, while simultaneously segmenting the tumor. We trained our method using a patient cohort containing 1508 glioma patients from 16 institutes. We tested our method on an independent dataset of 240 patients from 13 different institutes. RESULTS: In the independent test set, we achieved an IDH-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/III/IV). For the tumor delineation, we achieved a mean whole tumor Dice score of 0.84. CONCLUSIONS: We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first-of-its-kind method opens the door to more generalizable, instead of hyper-specialized, AI methods.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética , Mutação , Gradação de Tumores
5.
Int J Comput Assist Radiol Surg ; 17(8): 1453-1460, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35507209

RESUMO

PURPOSE: In minimally invasive spring-assisted craniectomy, surgeons plan the surgery by manually locating the cranial sutures. However, this approach is prone to error. Augmented reality (AR) could be used to visualize the cranial sutures and assist in the surgery planning. The purpose of our work is to develop an AR-based system to visualize cranial sutures, and to assess the accuracy and usability of using AR-based navigation for surgical guidance in minimally invasive spring-assisted craniectomy. METHODS: An AR system was developed that consists of an electromagnetic tracking system linked with a Microsoft HoloLens. The system was used to conduct a study with two skull phantoms. For each phantom, five sutures were annotated and visualized on the skull surface. Twelve participants assessed the system. For each participant, model alignment using six anatomical landmarks was performed, followed by the participant delineation of the visualized sutures. At the end, the participants filled a system usability scale (SUS) questionnaire. For evaluation, an independent optical tracking system was used and the delineated sutures were digitized and compared to the CT-annotated sutures. RESULTS: For a total of 120 delineated sutures, the distance of the annotated sutures to the planning reference was [Formula: see text] mm. The average delineation time per suture was [Formula: see text] s. For the system usability questionnaire, an average SUS score of 73 was obtained. CONCLUSION: The developed AR-system has good accuracy (average 2.4 mm distance) and could be used in the OR. The system can assist in the pre-planning of minimally invasive craniosynostosis surgeries to locate cranial sutures accurately instead of the traditional approach of manual palpation. Although the conducted phantom study was designed to closely reflect the clinical setup in the OR, further clinical validation of the developed system is needed and will be addressed in a future work.


Assuntos
Realidade Aumentada , Craniossinostoses , Cirurgia Assistida por Computador , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Imagens de Fantasmas
6.
J Pers Med ; 12(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35629148

RESUMO

Approximately 25% of the patients with muscle-invasive bladder cancer (MIBC) who are clinically node negative have occult lymph node metastases at radical cystectomy (RC) and pelvic lymph node dissection. The aim of this study was to evaluate preoperative CT-based radiomics to differentiate between pN+ and pN0 disease in patients with clinical stage cT2-T4aN0-N1M0 MIBC. Patients with cT2-T4aN0-N1M0 MIBC, of whom preoperative CT scans and pathology reports were available, were included from the prospective, multicenter CirGuidance trial. After manual segmentation of the lymph nodes, 564 radiomics features were extracted. A combination of different machine-learning methods was used to develop various decision models to differentiate between patients with pN+ and pN0 disease. A total of 209 patients (159 pN0; 50 pN+) were included, with a total of 3153 segmented lymph nodes. None of the individual radiomics features showed significant differences between pN+ and pN0 disease, and none of the radiomics models performed substantially better than random guessing. Hence, CT-based radiomics does not contribute to differentiation between pN+ and pN0 disease in patients with cT2-T4aN0-N1M0 MIBC.

7.
J Digit Imaging ; 35(2): 127-136, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088185

RESUMO

Treatment planning of gastrointestinal stromal tumors (GISTs) includes distinguishing GISTs from other intra-abdominal tumors and GISTs' molecular analysis. The aim of this study was to evaluate radiomics for distinguishing GISTs from other intra-abdominal tumors, and in GISTs, predict the c-KIT, PDGFRA, BRAF mutational status, and mitotic index (MI). Patients diagnosed at the Erasmus MC between 2004 and 2017, with GIST or non-GIST intra-abdominal tumors and a contrast-enhanced venous-phase CT, were retrospectively included. Tumors were segmented, from which 564 image features were extracted. Prediction models were constructed using a combination of machine learning approaches. The evaluation was performed in a 100 × random-split cross-validation. Model performance was compared to that of three radiologists. One hundred twenty-five GISTs and 122 non-GISTs were included. The GIST vs. non-GIST radiomics model had a mean area under the curve (AUC) of 0.77. Three radiologists had an AUC of 0.69, 0.76, and 0.84, respectively. The radiomics model had an AUC of 0.52 for c-KIT, 0.56 for c-KIT exon 11, and 0.52 for the MI. The numbers of PDGFRA, BRAF, and other c-KIT mutations were too low for analysis. Our radiomics model was able to distinguish GISTs from non-GISTs with a performance similar to three radiologists, but less observer dependent. Therefore, it may aid in the early diagnosis of GIST, facilitating rapid referral to specialized treatment centers. As the model was not able to predict any genetic or molecular features, it cannot aid in treatment planning yet.


Assuntos
Neoplasias Abdominais , Tumores do Estroma Gastrointestinal , Diagnóstico Diferencial , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-kit/genética , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
8.
Clin Exp Metastasis ; 38(5): 483-494, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34533669

RESUMO

Histopathological growth patterns (HGPs) are independent prognosticators for colorectal liver metastases (CRLM). Currently, HGPs are determined postoperatively. In this study, we evaluated radiomics for preoperative prediction of HGPs on computed tomography (CT), and its robustness to segmentation and acquisition variations. Patients with pure HGPs [i.e. 100% desmoplastic (dHGP) or 100% replacement (rHGP)] and a CT-scan who were surgically treated at the Erasmus MC between 2003-2015 were included retrospectively. Each lesion was segmented by three clinicians and a convolutional neural network (CNN). A prediction model was created using 564 radiomics features and a combination of machine learning approaches by training on the clinician's and testing on the unseen CNN segmentations. The intra-class correlation coefficient (ICC) was used to select features robust to segmentation variations; ComBat was used to harmonize for acquisition variations. Evaluation was performed through a 100 × random-split cross-validation. The study included 93 CRLM in 76 patients (48% dHGP; 52% rHGP). Despite substantial differences between the segmentations of the three clinicians and the CNN, the radiomics model had a mean area under the curve of 0.69. ICC-based feature selection or ComBat yielded no improvement. Concluding, the combination of a CNN for segmentation and radiomics for classification has potential for automatically distinguishing dHGPs from rHGP, and is robust to segmentation and acquisition variations. Pending further optimization, including extension to mixed HGPs, our model may serve as a preoperative addition to postoperative HGP assessment, enabling further exploitation of HGPs as a biomarker.


Assuntos
Neoplasias Colorretais/patologia , Aprendizado Profundo , Neoplasias Hepáticas/secundário , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Projetos Piloto
9.
Endocr Relat Cancer ; 28(8): 529-539, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34003139

RESUMO

Metastatic mesenteric masses of small intestinal neuroendocrine tumors (SI-NETs) are known to often cause intestinal complications. The aim of this study was to identify patients at risk to develop these complications based on routinely acquired CT scans using a standardized set of clinical criteria and radiomics. Retrospectively, CT scans of SI-NET patients with a mesenteric mass were included and systematically evaluated by five clinicians. For the radiomics approach, 1128 features were extracted from segmentations of the mesenteric mass and mesentery, after which radiomics models were created using a combination of machine learning approaches. The performances were compared to a multidisciplinary tumor board (MTB). The dataset included 68 patients (32 asymptomatic, 36 symptomatic). The clinicians had AUCs between 0.62 and 0.85 and showed poor agreement. The best radiomics model had a mean AUC of 0.77. The MTB had a sensitivity of 0.64 and specificity of 0.68. We conclude that systematic clinical evaluation of SI-NETs to predict intestinal complications had a similar performance than an expert MTB, but poor inter-observer agreement. Radiomics showed a similar performance and is objective, and thus is a promising tool to correctly identify these patients. However, further validation is needed before the transition to clinical practice.


Assuntos
Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Estudos Retrospectivos
10.
J Pers Med ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915880

RESUMO

Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict the BRAF status in a non-invasive manner. Patients with melanoma lung metastases, known BRAF status, and a pretreatment computed tomography scan were included. After semi-automatic annotation of the lung lesions (maximum two per patient), 540 radiomics features were extracted. A chest radiologist scored all segmented lung lesions according to the Lung Image Database Consortium (LIDC) criteria. Univariate analysis was performed to assess the predictive value of each feature for BRAF mutation status. A combination of various machine learning methods was used to develop BRAF decision models based on the radiomics features and LIDC criteria. A total of 169 lung lesions from 103 patients (51 BRAF-mt; 52 BRAF wild type) were included. There were no features with a significant discriminative value in the univariate analysis. Models based on radiomics features and LIDC criteria both performed as poorly as guessing. Hence, the BRAF mutation status in melanoma lung metastases cannot be predicted using radiomics features or visually scored LIDC criteria.

11.
Diagnostics (Basel) ; 11(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671533

RESUMO

Radiomics applied in MRI has shown promising results in classifying prostate cancer lesions. However, many papers describe single-center studies without external validation. The issues of using radiomics models on unseen data have not yet been sufficiently addressed. The aim of this study is to evaluate the generalizability of radiomics models for prostate cancer classification and to compare the performance of these models to the performance of radiologists. Multiparametric MRI, photographs and histology of radical prostatectomy specimens, and pathology reports of 107 patients were obtained from three healthcare centers in the Netherlands. By spatially correlating the MRI with histology, 204 lesions were identified. For each lesion, radiomics features were extracted from the MRI data. Radiomics models for discriminating high-grade (Gleason score ≥ 7) versus low-grade lesions were automatically generated using open-source machine learning software. The performance was tested both in a single-center setting through cross-validation and in a multi-center setting using the two unseen datasets as external validation. For comparison with clinical practice, a multi-center classifier was tested and compared with the Prostate Imaging Reporting and Data System version 2 (PIRADS v2) scoring performed by two expert radiologists. The three single-center models obtained a mean AUC of 0.75, which decreased to 0.54 when the model was applied to the external data, the radiologists obtained a mean AUC of 0.46. In the multi-center setting, the radiomics model obtained a mean AUC of 0.75 while the radiologists obtained a mean AUC of 0.47 on the same subset. While radiomics models have a decent performance when tested on data from the same center(s), they may show a significant drop in performance when applied to external data. On a multi-center dataset our radiomics model outperformed the radiologists, and thus, may represent a more accurate alternative for malignancy prediction.

12.
J Craniofac Surg ; 32(3): 956-963, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33405445

RESUMO

ABSTRACT: Three-dimensional (3D) stereophotogrammetry is a novel imaging technique that has gained popularity in the medical field as a reliable, non-invasive, and radiation-free imaging modality. It uses optical sensors to acquire multiple 2D images from different angles which are reconstructed into a 3D digital model of the subject's surface. The technique proved to be especially useful in craniofacial applications, where it serves as a tool to overcome the limitations imposed by conventional imaging modalities and subjective evaluation methods. The capability to acquire high-dimensional data in a quick and safe manner and archive them for retrospective longitudinal analyses, provides the field with a methodology to increase the understanding of the morphological development of the cranium, its growth patterns and the effect of different treatments over time.This review describes the role of 3D stereophotogrammetry in the evaluation of craniosynostosis, including reliability studies, current and potential clinical use cases, and practical challenges. Finally, developments within the research field are analyzed by means of bibliometric networks, depicting prominent research topics, authors, and institutions, to stimulate new ideas and collaborations in the field of craniofacial 3D stereophotogrammetry.We anticipate that utilization of this modality's full potential requires a global effort in terms of collaborations, data sharing, standardization, and harmonization. Such developments can facilitate larger studies and novel deep learning methods that can aid in reaching an objective consensus regarding the most effective treatments for patients with craniosynostosis and other craniofacial anomalies, and to increase our understanding of these complex dysmorphologies and associated phenotypes.


Assuntos
Craniossinostoses , Imageamento Tridimensional , Craniossinostoses/diagnóstico por imagem , Humanos , Fotogrametria , Reprodutibilidade dos Testes , Estudos Retrospectivos
13.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008177

RESUMO

The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods for significant-PCa segmentation or classification have been reported in the literature. To be able to assess the generalizability of the performance of these methods, using various external data sets is crucial. While both deep-learning and radiomics approaches have been compared based on the same data set of one center, the comparison of the performances of both approaches on various data sets from different centers and different scanners is lacking. The goal of this study was to compare the performance of a deep-learning model with the performance of a radiomics model for the significant-PCa diagnosis of the cohorts of various patients. We included the data from two consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one was a publicly available patient cohort (n = 195 patients) and the other contained data from patients from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor delineations and pathology reports were collected for all patients. During training, one of our patient cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development, and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances of the models were assessed in terms of their area under the receiver-operating-characteristic curve (AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach, the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based on delineated regions resulted in a more accurate tool for significant-PCa classification in the three unseen test sets when compared to a fully automated deep-learning model.

14.
Eur J Radiol ; 131: 109266, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32971431

RESUMO

PURPOSE: Diagnosing desmoid-type fibromatosis (DTF) requires an invasive tissue biopsy with ß-catenin staining and CTNNB1 mutational analysis, and is challenging due to its rarity. The aim of this study was to evaluate radiomics for distinguishing DTF from soft tissue sarcomas (STS), and in DTF, for predicting the CTNNB1 mutation types. METHODS: Patients with histologically confirmed extremity STS (non-DTF) or DTF and at least a pretreatment T1-weighted (T1w) MRI scan were retrospectively included. Tumors were semi-automatically annotated on the T1w scans, from which 411 features were extracted. Prediction models were created using a combination of various machine learning approaches. Evaluation was performed through a 100x random-split cross-validation. The model for DTF vs. non-DTF was compared to classification by two radiologists on a location matched subset. RESULTS: The data included 203 patients (72 DTF, 131 STS). The T1w radiomics model showed a mean AUC of 0.79 on the full dataset. Addition of T2w or T1w post-contrast scans did not improve the performance. On the location matched cohort, the T1w model had a mean AUC of 0.88 while the radiologists had an AUC of 0.80 and 0.88, respectively. For the prediction of the CTNNB1 mutation types (S45 F, T41A and wild-type), the T1w model showed an AUC of 0.61, 0.56, and 0.74. CONCLUSIONS: Our radiomics model was able to distinguish DTF from STS with high accuracy similar to two radiologists, but was not able to predict the CTNNB1 mutation status.


Assuntos
Fibromatose Agressiva/diagnóstico por imagem , Fibromatose Agressiva/genética , Genômica por Imageamento , Imageamento por Ressonância Magnética/métodos , Mutação , beta Catenina/genética , Adulto , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sarcoma/diagnóstico por imagem , beta Catenina/análise
15.
Cancers (Basel) ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560558

RESUMO

Significant prostate carcinoma (sPCa) classification based on MRI using radiomics or deep learning approaches has gained much interest, due to the potential application in assisting in clinical decision-making. OBJECTIVE: To systematically review the literature (i) to determine which algorithms are most frequently used for sPCa classification, (ii) to investigate whether there exists a relation between the performance and the method or the MRI sequences used, (iii) to assess what study design factors affect the performance on sPCa classification, and (iv) to research whether performance had been evaluated in a clinical setting Methods: The databases Embase and Ovid MEDLINE were searched for studies describing machine learning or deep learning classification methods discriminating between significant and nonsignificant PCa on multiparametric MRI that performed a valid validation procedure. Quality was assessed by the modified radiomics quality score. We computed the median area under the receiver operating curve (AUC) from overall methods and the interquartile range. RESULTS: From 2846 potentially relevant publications, 27 were included. The most frequent algorithms used in the literature for PCa classification are logistic regression (22%) and convolutional neural networks (CNNs) (22%). The median AUC was 0.79 (interquartile range: 0.77-0.87). No significant effect of number of included patients, image sequences, or reference standard on the reported performance was found. Three studies described an external validation and none of the papers described a validation in a prospective clinical trial. CONCLUSIONS: To unlock the promising potential of machine and deep learning approaches, validation studies and clinical prospective studies should be performed with an established protocol to assess the added value in decision-making.

16.
Neuroimage ; 220: 116842, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339774

RESUMO

Normal brain-aging occurs at all structural levels. Excessive pathophysiological changes in the brain, beyond the normal one, are implicated in the etiology of brain disorders such as severe forms of the schizophrenia spectrum and dementia. To account for brain-aging in health and disease, it is critical to study the age-dependent trajectories of brain biomarkers at various levels and among different age groups. The intracranial volume (ICV) is a key biological marker, and changes in the ICV during the lifespan can teach us about the biology of development, aging, and gene X environment interactions. However, whether ICV changes with age in adulthood is not resolved. Applying a semi-automatic in-house-built algorithm for ICV extraction on T1w MR brain scans in the Dutch longitudinal cohort (GROUP), we measured ICV changes. Individuals between the ages of 16 and 55 years were scanned up to three consecutive times with 3.32±0.32 years between consecutive scans (N = 482, 359, 302). Using the extracted ICVs, we calculated ICV longitudinal aging-trajectories based on three analysis methods; direct calculation of ICV differences between the first and the last scan, fitting all ICV measurements of individuals to a straight line, and applying a global linear mixed model fitting. We report statistically significant increase in the ICV in adulthood until the fourth decade of life (average change +0.03%/y, or about 0.5 ml/y, at age 20), and decrease in the ICV afterward (-0.09%/y, or about -1.2 ml/y, at age 55). To account for previous cross-sectional reports of ICV changes, we analyzed the same data using a cross-sectional approach. Our cross-sectional analysis detected ICV changes consistent with the previously reported cross-sectional effect. However, the reported amount of cross-sectional changes within this age range was significantly larger than the longitudinal changes. We attribute the cross-sectional results to a generational effect. In conclusion, the human intracranial volume does not stay constant during adulthood but instead shows a small increase during young adulthood and a decrease thereafter from the fourth decade of life. The age-related changes in the longitudinalmeasure are smaller than those reported using cross-sectional approaches and unlikely to affect structural brain imaging studies correcting for intracranial volume considerably. As to the possible mechanisms involved, this awaits further study, although thickening of the meninges and skull bones have been proposed, as well as a smaller amount of brain fluids addition above the overall loss of brain tissue.


Assuntos
Envelhecimento , Encéfalo/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/crescimento & desenvolvimento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Adulto Jovem
17.
Clin Cancer Res ; 25(24): 7455-7462, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31548344

RESUMO

PURPOSE: Patients with 1p/19q codeleted low-grade glioma (LGG) have longer overall survival and better treatment response than patients with 1p/19q intact tumors. Therefore, it is relevant to know the 1p/19q status. To investigate whether the 1p/19q status can be assessed prior to tumor resection, we developed a machine learning algorithm to predict the 1p/19q status of presumed LGG based on preoperative MRI. EXPERIMENTAL DESIGN: Preoperative brain MR images from 284 patients who had undergone biopsy or resection of presumed LGG were used to train a support vector machine algorithm. The algorithm was trained on the basis of features extracted from post-contrast T1-weighted and T2-weighted MR images and on patients' age and sex. The performance of the algorithm compared with tissue diagnosis was assessed on an external validation dataset of MR images from 129 patients with LGG from The Cancer Imaging Archive (TCIA). Four clinical experts also predicted the 1p/19q status of the TCIA MR images. RESULTS: The algorithm achieved an AUC of 0.72 in the external validation dataset. The algorithm had a higher predictive performance than the average of the neurosurgeons (AUC 0.52) but lower than that of the neuroradiologists (AUC of 0.81). There was a wide variability between clinical experts (AUC 0.45-0.83). CONCLUSIONS: Our results suggest that our algorithm can noninvasively predict the 1p/19q status of presumed LGG with a performance that on average outperformed the oncological neurosurgeons. Evaluation on an independent dataset indicates that our algorithm is robust and generalizable.


Assuntos
Algoritmos , Neoplasias Encefálicas/genética , Deleção Cromossômica , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 1/genética , Glioma/genética , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Análise Citogenética/métodos , Feminino , Glioma/patologia , Glioma/cirurgia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Curva ROC
18.
Int J Cardiovasc Imaging ; 35(11): 2123-2133, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31312998

RESUMO

Chronic silent brain infarctions, detected as new white matter hyperintensities on magnetic resonance imaging (MRI) following transcatheter aortic valve implantation (TAVI), are associated with long-term cognitive deterioration. This is the first study to investigate to which extent the calcification volume of the native aortic valve (AV) measured with cardiac computed tomography angiography (CTA) predicts the increase in chronic white matter hyperintensity volume after TAVI. A total of 36 patients (79 ± 5 years, median EuroSCORE II 1.9%, Q1-Q3 1.5-3.4%) with severe AV stenosis underwent fluid attenuation inversion recovery (FLAIR) MRI < 24 h prior to TAVI and at 3 months follow-up for assessment of cerebral white matter hyperintensity volume (mL). Calcification volumes (mm3) of the AV, aortic arch, landing zone and left ventricle were measured on the CTA pre-TAVI. The largest calcification volumes were found in the AV (median 692 mm3) and aortic arch (median 633 mm3), with a large variation between patients (Q1-Q3 482-1297 mm3 and 213-1727 mm3, respectively). The white matter hyperintensity volume increased in 72% of the patients. In these patients the median volume increase was of 1.1 mL (Q1-Q3 0.3-4.6 mL), corresponding with a 27% increase from baseline (Q1-Q3 7-104%). The calcification volume in the AV predicted the increase of white matter hyperintensity volume (Δ%), with a 35% increase of white matter hyperintensity volume, per 100 mm3 of AV calcification volume (SE 8.5, p < 0.001). The calcification volumes in the aortic arch, landing zone and left ventricle were not associated with the increase in white matter hyperintensity volume. In 72% of the patients new chronic white matter hyperintensities developed 3 months after TAVI, with a median increase of 27%. A higher calcification volume in the AV was associated with a larger increase in the white matter hyperintensity volume. These findings show the potential for automated AV calcium screening as an imaging biomarker to predict chronic silent brain infarctions.


Assuntos
Estenose da Valva Aórtica/cirurgia , Infarto Cerebral/etiologia , Leucoencefalopatias/etiologia , Substituição da Valva Aórtica Transcateter/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/diagnóstico por imagem , Doenças Assintomáticas , Infarto Cerebral/diagnóstico por imagem , Doença Crônica , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
19.
IEEE J Biomed Health Inform ; 23(3): 1171-1180, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29994230

RESUMO

Multichannel image registration is an important challenge in medical image analysis. Multichannel images result from modalities such as dual-energy CT or multispectral microscopy. Besides, multichannel feature images can be derived from acquired images, for instance, by applying multiscale feature banks to the original images to register. Multichannel registration techniques have been proposed, but most of them are applicable to only two multichannel images at a time. In the present study, we propose to formulate multichannel registration as a groupwise image registration problem. In this way, we derive a method that allows the registration of two or more multichannel images in a fully symmetric manner (i.e., all images play the same role in the registration procedure), and therefore, has transitive consistency by definition. The method that we introduce is applicable to any number of multichannel images, any number of channels per image, and it allows to take into account correlation between any pair of images and not just corresponding channels. In addition, it is fully modular in terms of dissimilarity measure, transformation model, regularisation method, and optimisation strategy. For two multimodal datasets, we computed feature images from the initially acquired images, and applied the proposed registration technique to the newly created sets of multichannel images. MIND descriptors were used as feature images, and we chose total correlation as groupwise dissimilarity measure. Results show that groupwise multichannel image registration is a competitive alternative to the pairwise multichannel scheme, in terms of registration accuracy and insensitivity towards registration reference spaces.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Microscopia , Tomografia Computadorizada por Raios X
20.
Med Phys ; 45(11): 4986-5003, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30168159

RESUMO

PURPOSE: Compensation for respiratory motion is important during abdominal cancer treatments. In this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound Tracking and extend the 2D results to relate them to clinical relevance in form of reducing treatment margins and hence sparing healthy tissues, while maintaining full duty cycle. METHODS: We describe methodologies for estimating and temporally predicting respiratory liver motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Furthermore, we investigated the trade-off between tracking accuracy and runtime in combination with temporal prediction strategies and their impact on treatment margins. RESULTS: Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 0.9 mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm). The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7 and 1.8 mm. In combination with temporal prediction, using the faster (41 vs 228 ms) but less accurate (1.4 vs 0.9 mm) tracking method resulted in substantially reduced treatment margins (70% vs 39%) in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction by keeping the treatment system latency low (150 vs 400 ms). Acceleration of the best tracking method would improve the margin reduction to 75%. CONCLUSIONS: Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Fígado/diagnóstico por imagem , Fígado/efeitos da radiação , Radioterapia Guiada por Imagem/métodos , Adulto , Voluntários Saudáveis , Humanos , Ultrassonografia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA