Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39061158

RESUMO

Extended synaptotagmins (E-Syts) are endoplasmic reticulum (ER)-associated proteins that facilitate the tethering of the ER to the plasma membrane (PM), participating in lipid transfer between the membranes and supporting the Orai1-STIM1 interaction at ER-PM junctions. Orai1 and STIM1 are the core proteins of store-operated Ca2+ entry (SOCE), a major mechanism for Ca2+ influx that regulates a variety of cellular functions. Aberrant modulation of SOCE in cells from different types of cancer has been reported to underlie the development of several tumoral features. Here we show that estrogen receptor-positive (ER+) breast cancer MCF7 and T47D cells and triple-negative breast cancer (TNBC) MDA-MB-231 cells overexpress E-Syt1 and E-Syt2 at the protein level; the latter is also overexpressed in the TNBC BT20 cell line. E-Syt1 and E-Syt2 knockdown was without effect on SOCE in non-tumoral MCF10A breast epithelial cells and ER+ T47D breast cancer cells; however, SOCE was significantly attenuated in ER+ MCF7 cells and TNBC MDA-MB-231 and BT20 cells upon transfection with siRNA E-Syt1 or E-Syt2. Consistent with this, E-Syt1 and E-Syt2 knockdown significantly reduced cell migration and viability in ER+ MCF7 cells and the TNBC cells investigated. To summarize, E-Syt1 and E-Syt2 play a relevant functional role in breast cancer cells.

2.
Sci Rep ; 13(1): 19471, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945647

RESUMO

Orai1 is the pore-forming subunit of the Ca2+-release activated Ca2+ channels that mediate store-operated Ca2+ entry (SOCE) in excitable and non-excitable cells. Two Orai1 forms have been identified in mammalian cells, the full-length variant Orai1α, and the short form Orai1ß, lacking the N-terminal 63 amino acids. Stem cells were isolated from non-tumoral breast epithelial cells of the MCF10A cell line, and the most representative ER+ , HER2 or triple negative breast cancer cell lines MCF7, SKBR3 and MDA-MB-231, respectively. Orai and TRPC family members expression was detected by RT-PCR and Western blotting. Changes in cytosolic Ca2+ concentration were analyzed by confocal microscopy using Fluo 4 and the spheroid-forming ability and self-renewal was estimated in culture plates coated with pHEMA using a cell imaging system. Here, we have characterized the expression of Orai family members and several TRPC channels at the transcript level in breast stem cells (BSC) derived from the non-tumoral breast epithelial cell line MCF10A and breast cancer stem cells (BCSC) derived from the well-known estrogen receptor positive (ER+), HER2 and triple negative cell lines MCF7, SKBR3 and MDA-MB-231, respectively. Furthermore, we have evaluated the mammosphere formation efficiency and self-renewal of the BSC and BCSC. Next, through a combination of Orai1 knockdown by iRNA and the use of MDA-MB-231 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1ß, we show that Orai1 is essential for mammosphere formation and self-renewal efficiency in BCSC derived from triple negative and HER2 subtypes cell cultures, while this channel has a negligible effect in BCSC derived from ER+ cells as well as in non-tumoral BSC. Both, Orai1α, and Orai1ß support SOCE in MDA-MB-231-derived BCSC with similar efficiency, as well as COX activation and mammosphere formation. These findings provide evidence of the functional role of Orai1α and Orai1ß in spheroid forming efficiency and self-renewal in breast cancer stem cells.


Assuntos
Cálcio , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio da Dieta/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Mamíferos/metabolismo
3.
Biomolecules ; 13(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37759684

RESUMO

The STIM family of proteins plays a crucial role in a plethora of cellular functions through the regulation of store-operated Ca2+ entry (SOCE) and, thus, intracellular calcium homeostasis. The two members of the mammalian STIM family, STIM1 and STIM2, are transmembrane proteins that act as Ca2+ sensors in the endoplasmic reticulum (ER) and, upon Ca2+ store discharge, interact with and activate the Orai/CRACs in the plasma membrane. Dysregulation of Ca2+ signaling leads to the pathogenesis of a variety of human diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and immune disorders. Therefore, understanding the mechanisms underlying Ca2+ signaling pathways is crucial for developing therapeutic strategies targeting these diseases. This review focuses on several rare conditions associated with STIM1 mutations that lead to either gain- or loss-of-function, characterized by myopathy, hematological and immunological disorders, among others, and due to abnormal activation of CRACs. In addition, we summarize the current evidence concerning STIM2 allele duplication and deletion associated with language, intellectual, and developmental delay, recurrent pulmonary infections, microcephaly, facial dimorphism, limb anomalies, hypogonadism, and congenital heart defects.


Assuntos
Líquidos Corporais , Doenças Cardiovasculares , Animais , Humanos , Alelos , Membrana Celular , Retículo Endoplasmático , Mamíferos
4.
Cancers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36612199

RESUMO

N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca2+ entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca2+ imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance.

5.
Cancers (Basel) ; 13(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34439314

RESUMO

Breast cancer is among the most common malignancies in women. From the molecular point of view, breast cancer can be grouped into different categories, including the luminal (estrogen receptor positive (ER+)) and triple negative subtypes, which show distinctive features and, thus, are sensitive to different therapies. Breast cancer cells are strongly dependent on Ca2+ influx. Store-operated Ca2+ entry (SOCE) has been found to support a variety of cancer hallmarks including cell viability, proliferation, migration, and metastasis. The Ca2+ channels of the Orai family and the endoplasmic reticulum Ca2+ sensor STIM1 are the essential components of SOCE, but the extent of Ca2+ influx is fine-tuned by several regulatory proteins, such as the STIM1 modulators SARAF and EFHB. Here, we show that the expression and/or function of SARAF and EFHB is altered in breast cancer cells and both proteins are required for cell proliferation, migration, and viability. EFHB expression is upregulated in luminal and triple negative breast cancer (TNBC) cells and is essential for full SOCE in these cells. SARAF expression was found to be similar in breast cancer and pre-neoplastic breast epithelial cells, and SARAF knockdown was found to result in enhanced SOCE in pre-neoplastic and TNBC cells. Interestingly, silencing SARAF expression in ER+ MCF7 cells led to attenuation of SOCE, thus suggesting a distinctive role for SARAF in this cell type. Finally, we used a combination of approaches to show that molecular knockdown of SARAF and EFHB significantly attenuates the ability of breast cancer cells to proliferate and migrate, as well as cell viability. In aggregate, SARAF and EFHB are required for the fine modulation of SOCE in breast cancer cells and play an important role in the maintenance of proliferation, migration, and viability in these cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA