Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 87(10): 4476-4490, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36102033

RESUMO

We evaluated the effect of cocoa pod husk (CPH) processing (microwave [MW], forced-air drying [FAD], and FAD plus extrusion [FAD-E]), and in vitro gastrointestinal digestion on the in vitro human colonic fermentation metabolism, in vitro bioactivity on human HT-29 colon cancer cell, and the in silico mechanism of selected compounds. CPH as a substrate for human colonic microbiota significantly decrease local pH (MW -0.7, FAD -0.2, and FAD-E -0.3, 24 h) and modifies their metabolic activity (short-chain fatty acids [SCFAs] production). FAD-E generated the highest butyric (7.6 mM/L, 4 h) and FAD the highest acetic and propionic acid levels (71.4 and 36.7 mM/L, 24 h). The in vitro colonic fermented FAD-E sample (FE/FAD-E) caused HT-29 colorectal cancer cells death by inducing damage on membrane integrity and inhibiting (up to 92%) histone-deacetylase (HDAC) activity. In silico results showed that chlorogenic acid, (-)-epicatechin, and (+)-catechin, followed by butyric and propionic acids, are highly involved in the HDAC6 inhibitory activity. The results highlight the potential human health postbiotic benefits of CPH consumption, mediated by colonic microbiota-derived metabolites. PRACTICAL APPLICATION: The enormous amount of CPH (10 tons/1 ton of dry beans) generated by the cocoa industry can be used as a removable source of bioactive compounds with physicochemical functionality and health bioactivity. However, their potential applications and health benefits are insufficiently explored. CPH represents a serious disposal problem; practical and innovative ideas to use this highly available and affordable material are urgent. Research exploring their potential applications can increase the sustainability of the cocoa agro-industry. This paper highlights the value addition that can be achieved with this valuable industrial co-product, generating new functional products and ingredients.


Assuntos
Cacau , Catequina , Humanos , Catequina/metabolismo , Propionatos/metabolismo , Histona Desacetilases/metabolismo , Ácido Clorogênico , Flavina-Adenina Dinucleotídeo/metabolismo , Histonas/metabolismo , Cacau/química , Ácidos Graxos Voláteis/metabolismo , Fermentação
2.
Food Res Int ; 137: 109725, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233294

RESUMO

Cocoa pod husk (CPH) contains many nutraceutical phytochemicals whose gastrointestinal fate and bioactivity can be affected by drying methods. Microwave (MW), forced-air drying (AF), and AF plus extrusion (AF-E) dried CPH samples were chemically characterized, and their phenolic and theobromine (THB) contents were evaluated under oral-gastric-intestinal (in vitro) and colonic fermentation (ex vivo). Absorption, distribution, metabolism, excretion, and toxicity (ADEMT) properties of CPH's small molecules were evaluated in silico. The chemical composition of CPH [mostly carbohydrates/insoluble dietary fiber], polyphenol [total polyphenols > condensed tannin (CT) > monomeric flavonoids] differed minimally among samples, except for THB content (AF/AF-E > MW) and antioxidant capacity (MW > AF/AF-E). Time- trend gastrointestinal (X3 behavior) and colonic bioaccessibility were AF/AF-E > MW, but phenolic acids, procyanidins, and THB fluctuated in a sample-specific fashion. In silico modeling showed that bioactives of CPH easily crossed the intestinal epithelium illustrating their bioaccessibility and, permeability. These bioactives can act as receptor ligands in a structure-dependent manner, suggesting their use as a functional ingredient.


Assuntos
Cacau , Chocolate , Simulação por Computador , Compostos Fitoquímicos , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA