Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(19): 5251-6, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114534

RESUMO

Nogalamycin, an aromatic polyketide displaying high cytotoxicity, has a unique structure, with one of the carbohydrate units covalently attached to the aglycone via an additional carbon-carbon bond. The underlying chemistry, which implies a particularly challenging reaction requiring activation of an aliphatic carbon atom, has remained enigmatic. Here, we show that the unusual C5''-C2 carbocyclization is catalyzed by the non-heme iron α-ketoglutarate (α-KG)-dependent SnoK in the biosynthesis of the anthracycline nogalamycin. The data are consistent with a mechanistic proposal whereby the Fe(IV) = O center abstracts the H5'' atom from the amino sugar of the substrate, with subsequent attack of the aromatic C2 carbon on the radical center. We further show that, in the same metabolic pathway, the homologous SnoN (38% sequence identity) catalyzes an epimerization step at the adjacent C4'' carbon, most likely via a radical mechanism involving the Fe(IV) = O center. SnoK and SnoN have surprisingly similar active site architectures considering the markedly different chemistries catalyzed by the enzymes. Structural studies reveal that the differences are achieved by minor changes in the alignment of the substrates in front of the reactive ferryl-oxo species. Our findings significantly expand the repertoire of reactions reported for this important protein family and provide an illustrative example of enzyme evolution.


Assuntos
Vias Biossintéticas/genética , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Nogalamicina/biossíntese , Oxigenases/genética , Streptomyces/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Evolução Molecular , Variação Genética/genética , Heme/metabolismo , Modelos Genéticos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Oxigenases/metabolismo , Streptomyces/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(32): 9866-71, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216966

RESUMO

Bacterial secondary metabolic pathways are responsible for the biosynthesis of thousands of bioactive natural products. Many enzymes residing in these pathways have evolved to catalyze unusual chemical transformations, which is facilitated by an evolutionary pressure promoting chemical diversity. Such divergent enzyme evolution has been observed in S-adenosyl-L-methionine (SAM)-dependent methyltransferases involved in the biosynthesis of anthracycline anticancer antibiotics; whereas DnrK from the daunorubicin pathway is a canonical 4-O-methyltransferase, the closely related RdmB (52% sequence identity) from the rhodomycin pathways is an atypical 10-hydroxylase that requires SAM, a thiol reducing agent, and molecular oxygen for activity. Here, we have used extensive chimeragenesis to gain insight into the functional differentiation of RdmB and show that insertion of a single serine residue to DnrK is sufficient for introduction of the monooxygenation activity. The crystal structure of DnrK-Ser in complex with aclacinomycin T and S-adenosyl-L-homocysteine refined to 1.9-Å resolution revealed that the inserted serine S297 resides in an α-helical segment adjacent to the substrate, but in a manner where the side chain points away from the active site. Further experimental work indicated that the shift in activity is mediated by rotation of a preceding phenylalanine F296 toward the active site, which blocks a channel to the surface of the protein that is present in native DnrK. The channel is also closed in RdmB and may be important for monooxygenation in a solvent-free environment. Finally, we postulate that the hydroxylation ability of RdmB originates from a previously undetected 10-decarboxylation activity of DnrK.


Assuntos
Antraciclinas/metabolismo , Vias Biossintéticas , Evolução Molecular , Oxigenases de Função Mista/genética , S-Adenosilmetionina/metabolismo , Aclarubicina/química , Aclarubicina/metabolismo , Sequência de Aminoácidos , Antraciclinas/química , Biocatálise , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Engenharia Genética , Hidroxilação , Metiltransferases/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Proteínas Mutantes/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática
3.
Proc Natl Acad Sci U S A ; 110(4): 1291-6, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297194

RESUMO

Alnumycin A is an exceptional aromatic polyketide that contains a carbohydrate-like 4'-hydroxy-5'-hydroxymethyl-2',7'-dioxane moiety attached to the aglycone via a carbon-carbon bond. Recently, we have identified the D-ribose-5-phosphate origin of the dioxane unit and demonstrated that AlnA and AlnB are responsible for the overall C-ribosylation reaction. Here, we provide direct evidence that AlnA is a natural C-glycosynthase, which catalyzes the attachment of D-ribose-5-phosphate to prealnumycin by formation of the C(8)-C(1') bond as demonstrated by the structure of the intermediate alnumycin P. This compound is subsequently dephosphorylated by AlnB, an enzyme of the haloacid dehalogenase superfamily. Structure determination of the native trimeric AlnA to 2.1-Å resolution revealed a highly globular fold encompassing an α/ß/α sandwich. The crystal structure of the complex with D-ribose-5-phosphate indicated that the phosphosugar is bound in the open-chain configuration. Identification of residues E29, K86, and K159 near the C-1 carbonyl of the ligand led us to propose that the carbon-carbon bond formation proceeds through a Michael-type addition. Determination of the crystal structure of the monomeric AlnB in the open conformation to 1.25-Å resolution showed that the protein consists of core and cap domains. Modeling of alnumycin P inside the cap domain positioned the phosphate group next to a Mg(2+) ion present at the junction of the domains. Mutagenesis data were consistent with the canonical reaction mechanism for this enzyme family revealing the importance of residues D15 and D17 for catalysis. The characterization of the prealnumycin C-ribosylation illustrates an alternative means for attachment of carbohydrates to natural products.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Naftoquinonas/química , Naftoquinonas/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Catálise , Cristalografia por Raios X , Glicosilação , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Policetídeos/química , Policetídeos/metabolismo , Ribosemonofosfatos/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA