Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 30(7): 489-518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757691

RESUMO

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.


Assuntos
Sistemas de Liberação de Medicamentos , Géis , Géis/química , Humanos , Administração Tópica , Animais , Administração Cutânea , Absorção Cutânea/efeitos dos fármacos
2.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541577

RESUMO

MXenes are two-dimensional transition metal carbides, nitrides, and carbonitrides that have become important materials in nanotechnology because of their remarkable mechanical, electrical, and thermal characteristics. This review emphasizes how crucial MXene conjugates are for several biomedical applications, especially in the field of cancer. These two-dimensional (2D) nanoconjugates with photothermal, chemotherapeutic, and photodynamic activities have demonstrated promise for highly effective and noninvasive anticancer therapy. MXene conjugates, with their distinctive optical capabilities, have been employed for bioimaging and biosensing, and their excellent light-to-heat conversion efficiency makes them perfect biocompatible and notably proficient nanoscale agents for photothermal applications. The synthesis and characterization of MXenes provide a framework for an in-depth understanding of various fabrication techniques and their importance in the customized formation of MXene conjugates. The following sections explore MXene-based conjugates for nanotheranostics and demonstrate their enormous potential for biomedical applications. Nanoconjugates, such as polymers, metals, graphene, hydrogels, biomimetics, quantum dots, and radio conjugates, exhibit unique properties that can be used for various therapeutic and diagnostic applications in the field of cancer nanotheranostics. An additional layer of understanding into the safety concerns of MXene nanoconjugates is provided by detailing their toxicity viewpoints. Furthermore, the review concludes by addressing the opportunities and challenges in the clinical translation of MXene-based nanoconjugates, emphasizing their potential in real-world medical practices.

3.
Pharmaceutics ; 15(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37765146

RESUMO

5-Fluorouracil (5-FU), a BCS class III drug, has low oral bioavailability and is cytotoxic in nature causing severe systemic side effects when administered through the intravenous route. Topical drug delivery could potentially mitigate the systemic side-effects. Microemulsions (MEs) would be an apt solution due to enhanced partitioning of the drug to the skin. However, conventional methods for preparing MEs are inefficient since they are not continuous and are very tedious and time-consuming processes hence revealing the need for the development of continuous manufacturing technology. In our study, 5-FU MEs were prepared using a continuous manufacturing Twin Screw Process (TSP) and its efficiency in the treatment of skin cancer was evaluated. Water-in-oil MEs were prepared using isopropyl myristate as the oil phase and Aerosol OT and Tween 80 as the surfactants. The average particle size was observed to be 178 nm. Transmission electron microscopy was employed to confirm the size and shape of the MEs. FTIR study proved no physical or chemical interaction between the excipients and the drug. In vitro drug release using vertical diffusion cells and ex vivo skin permeation studies showed that the drug was released sustainably and permeated across the skin, respectively. In in vitro cytotoxicity studies, 5-FU MEs were accessed in HaCat and A431 cell lines to determine percentage cell viability and IC50. Skin irritation and histopathological examination implied that the 5-FU MEs did not cause any significant irritation to the skin. In vivo pharmacodynamics studies in rats suggested that the optimised formulation was effective in treating squamous cell carcinoma (SCC). Therefore, 5-FU MEs efficiently overcame the various drawbacks faced during oral and intravenous drug delivery. Also, TSP proved to be a technique that overcomes the various problems associated with the conventional methods of preparing MEs.

4.
Pharmaceutics ; 14(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36559222

RESUMO

Silybin (SIL) is a polyphenolic phytoconstituent that is commonly used to treat liver disorders. It is difficult to fabricate an orally delivered SIL product due to its low oral bioavailability (0.95%). Therefore, the current research focusses on the development of a novel composition of a phospholipid complex, termed as nanophytophospholipid, of SIL by employing a unique, solvent-free Twin Screw Process (TSP), with the goal of augmenting the solubility and bioavailability of SIL. The optimised SIL-nanophytophospholipid (H6-SNP) was subjected to physicochemical interactions by spectrometry, thermal, X-ray and electron microscopy. The mechanism of drug and phospholipid interaction was confirmed by molecular docking and dynamics studies. Saturation solubility, in vitro dissolution, ex vivo permeation and preclinical pharmacokinetic studies were also conducted. H6-SNP showed good complexation efficiency, with a high practical yield (80%). The low particle size (334.7 ± 3.0 nm) and positively charged zeta potential (30.21 ± 0.3 mV) indicated the immediate dispersive nature of H6-SNP into nanometric dimensions, with good physical stability. Further high solubility and high drug release from the H6-SNP was also observed. The superiority of the H6-SNP was demonstrated in the ex vivo and preclinical pharmacokinetic studies, displaying enhanced apparent permeability (2.45-fold) and enhanced bioavailability (1.28-fold). Overall, these findings indicate that not only can phospholipid complexes be formed using solvent-free TSP, but also that nanophytophospholipids can be formed by using a specific quantity of lipid, drug, surfactant, superdisintegrant and diluent. This amalgamation of technology and unique composition can improve the oral bioavailability of poorly soluble and permeable phytoconstituents or drugs.

5.
J Control Release ; 346: 71-97, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439581

RESUMO

The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.


Assuntos
Nanopartículas , Neoplasias , Membrana Celular/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fototerapia
6.
Int J Biol Macromol ; 178: 444-463, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636277

RESUMO

In the present study, we have developed the core-shell metal organic framework (MOF) of zinc, wherein titanocene dichloride (TC) loaded lactoferrin (Lf) functioned as a core. The complexation of TC to Lf was studies using molecular dynamics study, Quantum mechanical model and spectroscopic investigations. Plackett-Burman design was used to screen and select the critical factors affecting the responses (size, zeta potential and PDI) while the effect of those parameter on the quality attributes (size and yield) was studied by means of a Box-Behnken design. The optimised Lf-TC nanoparticles were loaded inside the ZIF-8 framework along with an anticancer agent 5 Fluorouracil and characterized using techniques like FTIR, PXRD, Raman spectroscopy, EDX and UV-NIR spectroscopy and morphological techniques like SEM, TEM, AFM. The compatibility of the loaded ZIF-8 framework was examined by haemocompatibility studies. The potential of developed nanoplatform against Neuroblastoma was assessed using a cell line studies along with in vivo toxicity studies to ascertain its safety for after in-vivo administration in Wistar rats. Therefore, we can conclude that by employing the approach of DOE we were able to optimize the size and yield of Lf-TC NPs and further by loading inside ZIF-8 framework along with an anticancer drug like 5 fluorouracil we were able to develop a potential nanoplatform for the multimodal therapy of Neuroblastoma.


Assuntos
Antineoplásicos , Fluoruracila , Imidazóis , Estruturas Metalorgânicas , Simulação de Dinâmica Molecular , Nanopartículas , Neuroblastoma , Compostos Organometálicos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Fluoruracila/efeitos adversos , Fluoruracila/química , Fluoruracila/farmacologia , Imidazóis/efeitos adversos , Imidazóis/química , Imidazóis/farmacologia , Estruturas Metalorgânicas/efeitos adversos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Compostos Organometálicos/efeitos adversos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Ratos , Ratos Wistar
7.
J Control Release ; 329: 413-433, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301837

RESUMO

With the changing face of healthcare, there is a demand for drug delivery systems that have increased efficacy and biocompatibility. Nanotechnology derived drug carrier systems were found to be ideal candidates to meet these demands. Among the vast number of nanosized delivery systems, biomimetic nanoparticles have been researched at length. These nanoparticles mimic cellular functions and are highly biocompatible. They are also able to avoid clearance by the reticuloendothelial system which increases the time spent by them in the systemic circulation. Additionally, their low immunogenicity and targeting ability increase their significance as drug carriers. Based on their core material we have summarized them as biomimetic inorganic nanoparticles, biomimetic polymeric nanoparticles, and biomimetic lipid nanoparticles. The core then may be coated using membranes derived from erythrocytes, cancer cells, leukocytes, stem cells, and other membranes to endow them with biomimetic properties. They can be used for personalized therapy and diagnosis of a large number of diseases, primarily cancer. This review summarizes the various therapeutic approaches using biomimetic nanoparticles along with their applications in the field of cancer imaging, nucleic acid therapy and theranostic properties. A brief overview about toxicity concerns related to these nanoconstructs has been added to provide knowledge about biocompatibility of such nanoparticles.


Assuntos
Materiais Biomiméticos , Nanopartículas , Neoplasias , Biomimética , Membrana Celular , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA