Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biomater Adv ; 156: 213710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035639

RESUMO

As the only reliable treatment option for end-stage liver diseases, conventional liver transplantation confronts major supply limitations. Accordingly, the decellularization of discarded livers to produce bioscaffolds that support recellularization with progenitor/stem cells has emerged as a promising translational medicine approach. The success of this approach will substantially be determined by the extent of extracellular matrix (ECM) preservation during the decellularization process. Here, we assumed that the matrix metalloproteinase (MMP) inhibition could reduce the ECM damage during the whole liver decellularization of an animal model using a perfusion-based system. We demonstrated that the application of doxycycline as an MMP inhibitor led to significantly higher preservation of collagen, glycosaminoglycans, and hepatic growth factor (HGF) contents, as well as mechanical and structural features, including tensile strength, fiber integrity, and porosity. Notably, produced bioscaffolds were biocompatible and efficiently supported cell viability and proliferation in vitro. We also indicated that produced bioscaffolds efficiently supported HepG2 cell function upon seeding onto liver ECM discs using albumin and urea assay. Additionally, MMP inhibitor pretreated decellularized livers were more durable in contact with collagenase digestion compared to control bioscaffolds in vitro. Using zymography, we confirmed the underlying mechanism that results in these promising effects is through the inhibition of MMP2 and MMP9. Overall, we demonstrated a novel method based on MMP inhibition to ameliorate the ECM structure and composition preservation during liver decellularization as a critical step in fabricating transplantable bioengineered livers.


Assuntos
Transplante de Fígado , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/análise , Inibidores de Metaloproteinases de Matriz/metabolismo , Matriz Extracelular/química , Fígado
2.
J Cell Mol Med ; 27(6): 763-787, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786037

RESUMO

Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to "cure" ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100-150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Qualidade de Vida , MicroRNAs/genética , Vesículas Extracelulares/metabolismo
3.
Int J Immunopathol Pharmacol ; 37: 3946320221150712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36638388

RESUMO

INTRODUCTION: Human amniotic membrane (hAM) and its cells have been proposed for several clinical applications, including cancer therapy. However, reports on the anticancer effects of human amniotic epithelial stem cells-conditioned media (hAECs-CM) are limited. This work aims to evaluate the anticancer effects of hAECs-CM on cervical cancer and breast cancer cell lines in vitro. METHODS: Human term placentas were gained from uncomplicated Cesarean sections from healthy donor women. After amnion peeling from the chorion, its epithelial stem cells were isolated and cultured, and its conditioned medium (CM) was collected for experiments. MTT assay was performed to assess cancer cells viability. Migration rate of cancer cells was examined via wound healing assay. Cell-cycle distribution and apoptosis were determined using flow cytometry. RESULTS: Based on MTT assay hAECs-CM was cytotoxic against cancerous cell lines in a dose-time-dependent manner. After 48 h of treatment with hAECs-CM pure, the cell viability of breast cancer cells includes MCF-7 and MDA-MB-231 reached to 73.2% and 65.5%, respectively. In the same situation, HeLa cervical cancer cell line revealed the lowest viability by 47.3%. The wound-healing assay displayed an incomplete wound closure of scratched MDA-MB-231 cells and significant inhibition of cell migration after hAECs-CM treatment. The results also revealed that hAECs-CM exerted anti-proliferation activity by prompting cell cycle arrest and apoptosis of cancer cells.Conclusions: hAECs-CM is a potent candidate for inducing apoptosis and simultaneously inhibition of the proliferation and migration of cancer cells via inhibiting cell cycle blockade.


Assuntos
Neoplasias da Mama , Neoplasias do Colo do Útero , Humanos , Feminino , Células Epiteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Neoplasias do Colo do Útero/metabolismo , Células-Tronco , Neoplasias da Mama/metabolismo , Proliferação de Células
4.
Stem Cell Res Ther ; 13(1): 518, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371202

RESUMO

Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages. Imitating embryological bone formation through activation of these signaling pathways has been the focus of many osteogenic studies. Activation of osteogenic signaling can be done by using small molecules. Several of these agents, e.g., statins, metformin, adenosine, and dexamethasone have other clinical uses but have also shown osteogenic capacities. On the other hand, some other molecules such as T63 and tetrahydroquinolines are not as well recognized in the clinic. Osteogenic small molecules exert their effects through the activation of signaling pathways known to be related to osteogenesis. These pathways include more well-known pathways including BMP/Smad, Wnt, and Hedgehog as well as ancillary pathways including estrogen signaling and neuropeptide signaling. In this paper, we review the recent data on small molecule-mediated osteogenic differentiation, possible adjunctive agents with these molecules, and the signaling pathways through which each small molecule exerts its effects.


Assuntos
Osteogênese , Transdução de Sinais , Humanos , Idoso , Osteogênese/fisiologia , Diferenciação Celular/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco , Via de Sinalização Wnt/fisiologia , Células Cultivadas
5.
Sci Rep ; 12(1): 18148, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307463

RESUMO

Available therapeutic strategies for cancers have developed side effects, resistance, and recurrence that cause lower survival rates. Utilizing targeted drug delivery techniques has opened up new hopes for increasing the efficacy of cancer treatment. The current study aimed to investigate the appropriate condition of primming human amniotic epithelial cells (hAECs) with paclitaxel as a dual therapeutic approach consisting of inherent anticancer features of hAECs and loaded paclitaxel. The effects of paclitaxel on the viability of hAECs were evaluated to find an appropriate loading period. The possible mechanism of hAECs paclitaxel resistance was assessed using verapamil. Afterward, the loading and releasing efficacy of primed hAECs were evaluated by HPLC. The anti-neoplastic effects and apoptosis as possible mechanism of conditioned media of paclitaxel-loaded hAECs were assessed on breast and cervical cancer cell lines. hAECs are highly resistant to cytotoxic effects of paclitaxel in 24 h. Evaluating the role of P-glycoproteins in hAECs resistance showed that they do not participate in hAECs resistance. The HPLC demonstrated that hAECs uptake/release paclitaxel with optimum efficacy in 8000 ng/ml treatment. Assessing the anti-proliferative effect of primed hAECs condition media on cancer cells showed that the secretome induced 3.3- and 4.8-times more potent effects on MCF-7 and HeLa, respectively, and enhanced the apoptosis process. These results suggest that hAECs could possibly be used as a drug delivery system for cancer treatment. Besides, inherent anticancer effects of hAECs were preserved during the modification process. Synergistic anticancer effects of paclitaxel and hAECs can be translated into clinical practice, which would be evaluated in the future studies.


Assuntos
Neoplasias , Paclitaxel , Humanos , Paclitaxel/farmacologia , Paclitaxel/metabolismo , Meios de Cultivo Condicionados/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Apoptose , Células-Tronco/metabolismo , Células Epiteliais/metabolismo , Neoplasias/metabolismo
6.
Neurourol Urodyn ; 41(7): 1539-1552, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35842827

RESUMO

OBJECTIVE: Neurogenic lower urinary tract dysfunction (NLUTD), a challenging disorder, is defined by lack of bladder control due to the abnormalities in neural pathways and can be classified based on the location of lesions within the nervous system, thus investigating the neural pathways can help us to know the site of the lesion and specify the class of the NLUTD. Diffusion Tensor Imaging (DTI) tractography, a noninvasive advanced imaging method, is capable of detecting central nervous system pathologies, even if routine magnetic resonance imaging shows no abnormality. Accordingly, tractography is an ideal technique to evaluate patients with NLUTD and visualize the pathology site within the spine. This study aimed to introduce a novel method of spinal cord injury (SCI) to establish NLUTD in the rabbit and to investigate the potential of tractography in tracing neural tracts of the spinal cord in an induced NLUTD animal model. MATERIALS AND METHODS: An animal model of NLUTD was induced through cauterization of the spinal cord at the level T12-L1 in 12 rabbits. Then rabbits were assessed via DTI, urodynamic studies (UDS), voiding cystourethrogram (VCUG), and pathology assessments using antineurofilament 200 (NF200) antibody, anti-S100, anti-Smooth Muscle Actin, anti-Myogenin, and anti-MyoD1. RESULTS: The tractography visualized lesions within spinal cord fibers. DTI parameters including fractional anisotropy (FA) value and tract density were significantly decreased (FA: p-value = 0.01, Tract density: p-value = 0.05) after injury. The mean diffusivity (MD) was insignificantly increased compared to before the injury. Also, the results of UDS and pathology assessments corroborated that applying SCI and the establishment of the NLUTD model was completely successful. CONCLUSION: In the present study, we investigated the auxiliary role of tractography in detecting the spinal cord lesions in the novel established rabbit model of NLUTD. The introduced method of NLUTD induction was without the leg's neurological deficit, easily applicable, low-cost, and was accompanied by minimal surgical preparation and a satisfactory survival rate in comparison with other SCI animal models.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinaria Neurogênica , Animais , Imagem de Tensor de Difusão/métodos , Coelhos , Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Bexiga Urinária , Bexiga Urinaria Neurogênica/complicações , Bexiga Urinaria Neurogênica/etiologia
7.
Stem Cell Res Ther ; 13(1): 126, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337387

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin-angiotensin-aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Células Epiteliais , Feminino , Humanos , Inflamação/terapia , Placenta , Gravidez , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2
8.
Stem Cell Rev Rep ; 18(6): 2045-2058, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35303271

RESUMO

BACKGROUND: Pressure ulcers (PUs), a result of ischemic reperfusion (IR) injuries, are prevalent skin problems which show refractoriness against standard therapeutic approaches. Besides, scar formation is a critical complication of ulcers that affects functionality and the skin's cosmetic aspect. The current study aimed to investigate the effects of placenta-derived human amniotic epithelial cells (hAECs), as important agents of regenerative medicine and stem cell therapy, on accelerating the healing of IR ulcers in mice. We also evaluated the effects of these cells on reducing the TGFß-induced scar formation. METHODS: Male Balb/c mice at the age of 6-8 weeks were subjected to three IR cycles. Afterward, the mice were divided into three experimental groups (n = 6 per group), including the control group, vehicle group, and hAECs treatment group. Mice of the treatment group received 100 µL of fresh hAECs 1 × 106 cell/ml suspension in PBS. Afterward, mice were assessed by histological, stereological, molecular, and western blotting techniques at 3, 7, 14, and 21 days after wounding. RESULTS: The histological and stereological results showed the most diminutive scar formation and better healing in the hAECs treated group compared to control group. Furthermore, our results demonstrated that the expression level of Col1A1 on days 3, 14, and 21 in the hAECs treated group was significantly lower than control. Additionally, injection of hAECs significantly reduced the expression level of Col3A1 on days 3, 7, and 21 while increased Col3A1 on the day 14. Otherwise, in the hAECs treated group, the expression levels of VEGFA on days 7 and 14 were higher, which showed that hAECs could promote angiogenesis and wound healing. Also, cell therapy significantly lowered the protein levels of TGF-ß1 on day 14, while the protein level of TGF-ß3 on day 14 was significantly higher. This data could demonstrate the role of hAECs in scar reduction in IR wounds. CONCLUSION: These results suggest that hAECs can promote re-epithelialization and wound closure in an animal model of PU. They also reduced scar formation during wound healing by reducing the expression of TGF-ß1/ TGF-ß3 ratio.


Assuntos
Cicatriz , Células Epiteliais , Traumatismo por Reperfusão , Cicatrização , Âmnio/citologia , Animais , Cicatriz/terapia , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Placenta/citologia , Gravidez , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo , Úlcera/metabolismo
9.
Sci Rep ; 11(1): 22508, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795361

RESUMO

Decellularized and de-epithelialized placenta membranes have widely been used as scaffolds and grafts in tissue engineering and regenerative medicine. Exceptional pro-angiogenic and biomechanical properties and low immunogenicity have made the amniochorionic membrane a unique substrate which provides an enriched niche for cellular growth. Herein, an optimized combination of enzymatic solutions (based on streptokinase) with mechanical scrapping is used to remove the amniotic epithelium and chorion trophoblastic layer, which resulted in exposing the basement membranes of both sides without their separation and subsequent damages to the in-between spongy layer. Biomechanical and biodegradability properties, endothelial proliferation capacity, and in vivo pro-angiogenic capabilities of the substrate were also evaluated. Histological staining, immunohistochemistry (IHC) staining for collagen IV, and scanning electron microscope demonstrated that the underlying amniotic and chorionic basement membranes remained intact while the epithelial and trophoblastic layers were entirely removed without considerable damage to basement membranes. The biomechanical evaluation showed that the scaffold is suturable. Proliferation assay, real-time polymerase chain reaction for endothelial adhesion molecules, and IHC demonstrated that both side basement membranes could support the growth of endothelial cells without altering endothelial characteristics. The dorsal skinfold chamber animal model indicated that both side basement membranes could promote angiogenesis. This bi-sided substrate with two exposed surfaces for cultivating various cells would have potential applications in the skin, cardiac, vascularized composite allografts, and microvascular tissue engineering.


Assuntos
Membrana Basal/metabolismo , Técnicas de Cultura de Células/métodos , Células Endoteliais/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Âmnio/química , Animais , Antígenos CD/biossíntese , Fenômenos Biomecânicos , Caderinas/biossíntese , Proliferação de Células , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Masculino , Microcirculação , Neovascularização Patológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Gravidez , Ratos , Medicina Regenerativa/métodos , Fatores de Tempo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular
10.
Tissue Eng Part C Methods ; 27(10): 543-558, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34541897

RESUMO

Cell delivery through spray instruments is a promising and effective method in tissue engineering and regenerative medicine. It is used for treating different acute and chronic wounds, including burns with different etiologies, chronic diabetic or venous wounds, postcancer surgery, and hypopigmentation disorders. Cell spray can decrease the needed donor site area compared with conventional autologous skin grafting. Keratinocytes, fibroblasts, melanocytes, and mesenchymal stem cells are promising cell sources for cell spray procedures. Different spray instruments are designed and utilized to deliver the cells to the intended skin area. In an efficient spray instrument, cell viability and wound coverage are two determining parameters influenced by various physical and biological factors such as air pressure, spraying distance, viscosity of suspension, stiffness of the wound surface, and velocity of impact. Besides, to improve cell delivery by spray instruments, some matrices and growth factors can be added to cell suspensions. This review focuses on the different types of cells and spray instruments used in cell delivery procedures. It also discusses physical and biological parameters associated with cell viability and wound coverage in spray instruments. Moreover, the recent advances in codelivery of cells with biological glues and growth factors, as well as clinical translation of cell spraying, have been reviewed. Impact statement Skin wounds are a group of prevalent injuries that can lead to life-threatening complexities. As a focus of interest, stem cell therapy and spray-based cell delivery have effectively decreased associated morbidity and mortality. This review summarizes a broad scope of recent evidence related to spray-based cell therapy, instruments, and approaches adopted to make the process more efficient in treating skin wounds. An overview including utilized cell types, clinical cases, and current challenges is also provided.

11.
Biomed Pharmacother ; 142: 112026, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411911

RESUMO

Cell-based therapy (CBT) is a revolutionary approach for curing a variety of degenerative diseases. Stem cell-based regenerative medicine is a novel strategy for treating tissue damages regarding stem cells unique properties such as differentiation potential, paracrine impacts, and self-renewal ability. However, the current cell-based treatments encounter considerable challenges to be translated into clinical practice, including low cell survival, migration, and differentiation rate of transplanted stem cells. The poor stem cell therapy outcomes mainly originate from the unfavorable condition of damaged tissues for transplanted stem cells. The promising method of preconditioning improves cell resistance against the host environment's stress by imposing certain conditions similar to the harsh microenvironment of the damaged tissues on the transplanted stem cells. Various pharmacological, biological, and physical inducers are able to establish preconditioning. In addition to their known pharmacological effects on tissues and cells, these preconditioning agents improve cell biological aspects such as cell survival, proliferation, differentiation, migration, immunomodulation, paracrine impacts, and angiogenesis. This review focuses on different protocols and inducers of preconditioning along with underlying molecular mechanisms of their effects on stem cell behavior. Moreover, preclinical applications of preconditioned stem cells in various damaged organs such as heart, lung, brain, bone, cartilage, liver, and kidney are discussed with prospects of their translation into the clinic.


Assuntos
Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Pesquisa Translacional Biomédica/métodos
12.
Technol Cancer Res Treat ; 20: 15330338211036318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34402329

RESUMO

OBJECTIVES: Traditional breast cancer treatments have challenges including inefficiency, multidrug resistance, severe side effects, and targeting non-specifically. The development of alternative treatment strategies has attracted a great deal of interest. Using the amniotic membrane has become a promising and convenient new approach for cancer therapy. This study aimed to evaluate the anti-cancer ability of conditioned medium extracted from the human amniotic membrane (hAM-CM) on breast cancer cells. METHODS: Conditioned medium was collected after 48 h incubation of hAM in epithelial up manner. MTT, cell cycle, apoptosis, colony formation, and sphere assays were used to determine the impact of hAM-CM on breast cancer cell lines. The effects of hAM-CM on the migration and invasion of breast cancer cells were determined using scratch wound healing and transwell assays, respectively. RESULTS: Based on the results, cell viability was significantly decreased by hAM-CM in a dose-dependent manner. The hAM-CM remarkably induced apoptosis and necrosis of cancer cells. Moreover, cell migration and invasion potential of cancer cells decreased after the hAM-CM treatment. Further, both the number of colonies and their morphologies were affected by the treatment. In the treated group, a significant decrease in the number of colonies along with an obvious change in their morphologies from holoclone shape to a dominant paracolone structure was observed. CONCLUSION: Our results indicate that the conditioned medium derived from the human amniotic membrane able to inhibit proliferation and metastasis of tumor cells and can be considered a natural and valuable candidate for breast cancer therapy.


Assuntos
Âmnio/citologia , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Meios de Cultivo Condicionados/farmacologia , Apoptose , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Humanos
13.
Front Immunol ; 12: 638639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177890

RESUMO

Recent advances in cancer immunotherapy have attracted great interest due to the natural capacity of the immune system to fight cancer. This field has been revolutionized by the advent of chimeric antigen receptor (CAR) T cell therapy that is utilizing an antigen recognition domain to redirect patients' T cells to selectively attack cancer cells. CAR T cells are designed with antigen-binding moieties fused to signaling and co-stimulatory intracellular domains. Despite significant success in hematologic malignancies, CAR T cells encounter many obstacles for treating solid tumors due to tumor heterogeneity, treatment-associated toxicities, and immunosuppressive tumor microenvironment. Although the current strategies for enhancing CAR T cell efficacy and specificity are promising, they have their own limitations, making it necessary to develop new genetic engineering strategies. In this article, we have proposed a novel logic gate for recognizing tumor-associated antigens by employing intracellular JAK/STAT signaling pathway to enhance CAR T Cells potency and specificity. Moreover, this new-generation CAR T cell is empowered to secrete bispecific T cell engagers (BiTEs) against cancer-associated fibroblasts (CAFs) to diminish tumor metastasis and angiogenesis and increase T cell infiltration.


Assuntos
Imunoterapia Adotiva/métodos , Engenharia de Proteínas/métodos , Receptores de Antígenos Quiméricos/imunologia , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
15.
Stem Cell Res Ther ; 12(1): 126, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579346

RESUMO

Cancer is a leading cause of death in both developed and developing countries, and because of population growth and aging, it is a growing medical burden worldwide. With robust development in medicine, the use of stem cells has opened new treatment modalities in cancer therapy. In adult stem cells, mesenchymal stem cells (MSCs) are showing rising promise in cancer treatment due to their unique properties. Among different sources of MSCs, human amniotic fluid/membrane is an attractive and suitable reservoir. There are conflicting opinions about the role of human amniotic membrane/fluid mesenchymal stem cells (hAMSCS/hAFMSCs) in cancer, as some studies demonstrating the anticancer effects of these cells and others suggesting their progressive effects on cancer. This review focuses on recent findings about the role of hAMSCs/hAFMSCs in cancer treatment and summarizes the suppressing as well as promoting effects of these cells on cancer progression and underling mechanisms.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Adulto , Âmnio , Líquido Amniótico , Diferenciação Celular , Células Cultivadas , Humanos
16.
Stem Cell Rev Rep ; 17(1): 176-192, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432484

RESUMO

With the outbreak of coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world has been facing an unprecedented challenge. Considering the lack of appropriate therapy for COVID-19, it is crucial to develop effective treatments instead of supportive approaches. Mesenchymal stem cells (MSCs) as multipotent stromal cells have been shown to possess treating potency through inhibiting or modulating the pathological events in COVID-19. MSCs and their exosomes participate in immunomodulation by controlling cell-mediated immunity and cytokine release. Furthermore, they repair the renin-angiotensin-aldosterone system (RAAS) malfunction, increase alveolar fluid clearance, and reduce the chance of hypercoagulation. Besides the lung, which is the primary target of SARS-CoV-2, the heart, kidney, nervous system, and gastrointestinal tract are also affected by COVID-19. Thus, the efficacy of targeting these organs via different delivery routes of MSCs and their exosomes should be evaluated to ensure safe and effective MSCs administration in COVID-19. This review focuses on the proposed therapeutic mechanisms and delivery routes of MSCs and their exosomes to the damaged organs. It also discusses the possible application of primed and genetically modified MSCs as a promising drug delivery system in COVID-19. Moreover, the recent advances in the clinical trials of MSCs and MSCs-derived exosomes as one of the promising therapeutic approaches in COVID-19 have been reviewed.


Assuntos
COVID-19/terapia , Imunomodulação/imunologia , Pulmão/imunologia , Transplante de Células-Tronco Mesenquimais , COVID-19/imunologia , COVID-19/virologia , Exossomos/imunologia , Humanos , Pulmão/patologia , Pulmão/virologia , Células-Tronco Mesenquimais/imunologia , SARS-CoV-2/patogenicidade
17.
Cell Tissue Res ; 383(2): 751-763, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32960356

RESUMO

Stem cells are a promising tool for treatment of a variety of degenerative diseases. Human amniotic epithelial stem cells (hAECs) have desirable and unique characteristics that make them a proper candidate for cell therapy. In this study, we have investigated the effects of BMP-4 (bone morphogenetic protein-4) and its inhibition on differentiation of AECs into ectodermal lineages. Analysis of AEC-derived ectodermal lineages (neurons and keratinocytes) was performed by using flow cytometry technique for Map2 and ß-tubulin (as neuron markers), Olig2 and MBP (as oligodendrocyte markers), and K14 and K10 (as keratinocyte markers). The results of this study illustrated that noggin (as BMP antagonist), BMP4, and both BMP4 and heparin (together or separately) increased neural and keratinocyte marker expression, respectively. The expression of markers MAP2, olig2, and K14 in hAECs has been significantly decreased 21 days after exposure to differentiation medium (without growth factors) compared with isolation day, which supports the hypothesis that AECs can be dedifferentiated into pluripotent cells. Moreover, activation and inhibition of BMP signaling have no effects on viability of hAECs. The results of this study showed that BMP signaling and its inhibition are the key factors for ectodermal lineage differentiation of amnion-derived stem cells.


Assuntos
Âmnio/citologia , Biomarcadores/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Ectoderma/citologia , Células Epiteliais/citologia , Células-Tronco/citologia , Desdiferenciação Celular/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tubulina (Proteína)/metabolismo
18.
Sci Rep ; 10(1): 22012, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328579

RESUMO

The utilization of conductive polymers for fabrication of neural scaffolds have attracted much interest because of providing a microenvironment which can imitate nerve tissues. In this study, polypyrrole (PPy)-alginate (Alg) composites were prepared using different percentages of alginate and pyrrole by oxidative polymerization method using FeCl3 as an oxidant and electrical conductivity of composites were measured by four probe method. In addition, chitosan-based nanoparticles were synthesized by ionic gelation method and after characterization merged into PPy-Alg composite in order to fabricate a conductive, hydrophilic, processable and stable scaffold. Physiochemical characterization of nanochitosan/PPy-Alg scaffold such as electrical conductivity, porosity, swelling and degradation was investigated. Moreover, cytotoxicity and proliferation were examined by culturing OLN-93 neural and human dermal fibroblasts cells on the Nanochitosan/PPy-Alg scaffold. Due to the high conductivity, the film with ratio 2:10 (PPy-Alg) was recognized more suitable for fabrication of the final scaffold. Results from FT-IR and SEM, evaluation of porosity, swelling and degradation, as well as viability and proliferation of OLN-93 neural and fibroblast cells confirmed cytocompatiblity of the Nanochitosan/PPy-Alg scaffold. Based on the features of the constructed scaffold, Nanochitosan/PPy-Alg scaffold can be a proper candidate for neural tissue engineering.


Assuntos
Alginatos/química , Quitosana/química , Nanopartículas/química , Tecido Nervoso/fisiologia , Polímeros/química , Pirróis/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Adesão Celular , Morte Celular , Linhagem Celular , Proliferação de Células , Condutividade Elétrica , Fibroblastos/citologia , Humanos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Molhabilidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-32793565

RESUMO

Mesenchymal stem cells (MSCs), as an undifferentiated group of adult multipotent cells, have remarkable antitumor features that bring them up as a novel choice to treat cancers. MSCs are capable of altering the behavior of cells in the tumor microenvironment, inducing an anti-inflammatory effect in tumor cells, inhibiting tumor angiogenesis, and preventing metastasis. Besides, MSCs can induce apoptosis and inhibit the proliferation of tumor cells. The ability of MSCs to be loaded with chemotherapeutic drugs and release them in the site of primary and metastatic neoplasms makes them a preferable choice as targeted drug delivery procedure. Targeted drug delivery minimizes unexpected side effects of chemotherapeutic drugs and improves clinical outcomes. This review focuses on recent advances on innate antineoplastic features of MSCs and the effect of chemotherapeutic drugs on viability, proliferation, and the regenerative capacity of various kinds of MSCs. It also discusses the efficacy and mechanisms of drug loading and releasing procedures along with in vivo and in vitro preclinical outcomes of antineoplastic effects of primed MSCs for clinical prospection.

20.
Eur J Pharmacol ; 877: 173075, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32222494

RESUMO

Marine organisms are an important source of chemical compounds which are appropriate for use as therapeutic agents. Among them, Sea pens produce valuable chemical compounds being used as anti-cancer drugs. The aim of this study was to investigate anti-cancer property of extracted and purified compounds from marine organism Sea pen and evaluate their effects on inducing of apoptosis. The extracts were prepared from dried colony of Virgularia gustaviana. The compounds (3ß)-Cholest,5en,3ol (cholesterol) (15 mg), Hexadecanoic acid (2.5 mg) and 2-Hexadecanol (10.7 mg) were identified by GC-MS and NMR. The cytotoxic effects of the compounds were evaluated on Hela and MDA-Mb-231 human cancer cell lines with MTT assay. Immunocytochemistry and Western Blot analyses were used to evaluate the expression of apoptosis related markers Caspase 3, Caspase 8, Bax and BCL2 in cancer cells after treating with three compounds. The purified compounds reduced viability of human breast cancer cell line MDA-MB-231 and human cervical cancer cell line Hela concentration-dependently. 2-Hexadecanol reduced significantly the viability of both cancer cell lines in comparison to the other purified compounds. Treatment of cancer cells with the three purified compounds increased the expression of caspase-3, caspase-8 and Bax proteins and decreased the relative Bcl-2/Bax ratio, demonstrating induction of apoptosis as possible mechanism of action. According to the results, three purified compounds inhibit the growth of cancer cells by inducing of apoptosis pathway; an effect which needs to be further investigated in the future studies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Cnidários/química , Neoplasias do Colo do Útero/patologia , Animais , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA