Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 194(2): 191-208, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37261848

RESUMO

Endocrine active substances, including steroidogenesis modulators, have received increased attention. The in vitro H295R steroidogenesis assay (OECD TG 456) is commonly used to test for this modality. However, current detection methods often fail to capture alterations to estrogen biosynthesis. The present study explored the potential of ERα and AR CALUX bioassays to serve as a detection system for the original H295R assay, as they can quantify lower hormone concentrations and can simultaneously provide information about estrogen- and androgen-receptor activities. Using substances from the original OECD validation study, we obtained lowest observed effect concentrations for steroidogenesis mostly equivalent to those previously reported and sometimes lower for estrogen biosynthesis. However, categorization of many of these substances as receptor (ant)agonists or disruptors of steroidogenesis was difficult because often substances had both modalities, including some where the receptor-mediated activities were identified at concentrations below those triggering steroidogenic effects. When the leading activity was not accounted for, H295R-CALUX assay sensitivity in comparison to the OECD validation study was 0.50 for androgen and 0.78 for estrogen biosynthesis. However, upon reinterpretation of the combined assay results to identify endocrine activities without regard to the modality or direction of effects, assay sensitivity was equal to 1.00. These proof-of-concept study findings indicate the high relevance of this assay for the identification of endocrine active substances with additional valuable mode-of-action information and the capacity to detect smaller changes in estrogen biosynthesis, suggesting that the coupled H295R-CALUX assay has promise for the analysis of samples in a decision-making context.


Assuntos
Androgênios , Disruptores Endócrinos , Receptor alfa de Estrogênio , Receptores de Estrogênio , Estrogênios , Antagonistas de Androgênios , Bioensaio/métodos , Disruptores Endócrinos/toxicidade
2.
Eur J Immunol ; 53(8): e2350449, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37134263

RESUMO

ER aminopeptidase 1 (ERAP1) is an ER-resident aminopeptidase that excises N-terminal residues of peptides that then bind onto Major Histocompatibility Complex I molecules (MHC-I) and indirectly modulates adaptive immune responses. ERAP1 contains an allosteric regulatory site that accommodates the C-terminus of at least some peptide substrates, raising questions about its exact influence on antigen presentation and the potential of allosteric inhibition for cancer immunotherapy. We used an inhibitor that targets this regulatory site to study its effect on the immunopeptidome of a human cancer cell line. The immunopeptidomes of allosterically inhibited and ERAP1 KO cells contain high-affinity peptides with sequence motifs consistent with the cellular HLA class I haplotypes but are strikingly different in peptide composition. Compared to KO cells, allosteric inhibition did not affect the length distribution of peptides and skewed the peptide repertoire both in terms of sequence motifs and HLA allele utilization, indicating significant mechanistic differences between the two ways of disrupting ERAP1 function. These findings suggest that the regulatory site of ERAP1 plays distinct roles in antigenic peptide selection, which should be taken into consideration when designing therapeutic interventions targeting the cancer immunopeptidome.


Assuntos
Aminopeptidases , Peptídeos , Humanos , Aminopeptidases/genética , Apresentação de Antígeno , Antígenos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA