Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 234: 111863, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691263

RESUMO

Type 1 copper proteins have a conserved ligand set of one cysteine and two histidines, with many proteins, such as azurin, also containing an axial methionine. While the cysteine and methionine in azurin have been replaced with their respective isostructural analogues of unnatural amino acids to reveal their roles in tuning electronic structures and functional properties, such as reduction potentials (E°'), the histidine ligands have not been probed in this way. We herein report the substitution of His117 in azurin with three unnatural isostructural analogues, 5-nitrohistidine(Ntr), thiazolylalanine(SHis) and 1-methylhistidine(MeH) by expressed protein ligation. While UV-vis absorption and electron paramagnetic resonance spectroscopies confirm that isostructural replacement results in minimal structural change in the Cu(II) state, the E°' of these variants increases with increasing pKa of the δ nitrogens of the imidazole. This counter-intuitive relationship between E°' of the protein and pKa of the sidechain group suggests additional factors may play a role in tuning E°'.


Assuntos
Azurina , Azurina/química , Azurina/metabolismo , Cobre/química , Cisteína , Espectroscopia de Ressonância de Spin Eletrônica , Histidina , Ligantes , Metionina/química , Pseudomonas aeruginosa/metabolismo
2.
Chem Sci ; 12(19): 6569-6579, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-34040732

RESUMO

Mononitrosyl and dinitrosyl iron species, such as {FeNO}7, {FeNO}8 and {Fe(NO)2}9, have been proposed to play pivotal roles in the nitrosylation processes of nonheme iron centers in biological systems. Despite their importance, it has been difficult to capture and characterize them in the same scaffold of either native enzymes or their synthetic analogs due to the distinct structural requirements of the three species, using redox reagents compatible with biomolecules under physiological conditions. Here, we report the realization of stepwise nitrosylation of a mononuclear nonheme iron site in an engineered azurin under such conditions. Through tuning the number of nitric oxide equivalents and reaction time, controlled formation of {FeNO}7 and {Fe(NO)2}9 species was achieved, and the elusive {FeNO}8 species was inferred by EPR spectroscopy and observed by Mössbauer spectroscopy, with complemental evidence for the conversion of {FeNO}7 to {Fe(NO)2}9 species by UV-Vis, resonance Raman and FT-IR spectroscopies. The entire pathway of the nitrosylation process, Fe(ii) → {FeNO}7 → {FeNO}8 → {Fe(NO)2}9, has been elucidated within the same protein scaffold based on spectroscopic characterization and DFT calculations. These results not only enhance the understanding of the dinitrosyl iron complex formation process, but also shed light on the physiological roles of nitric oxide signaling mediated by nonheme iron proteins.

3.
J Am Chem Soc ; 140(37): 11686-11697, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30198716

RESUMO

Photoacoustic (PA) tomography is a noninvasive technology that utilizes near-infrared (NIR) excitation and ultrasonic detection to image biological tissue at centimeter depths. While several activatable small-molecule PA sensors have been developed for various analytes, the use of PA molecules for deep-tissue analyte delivery and monitoring remains an underexplored area of research. Herein, we describe the synthesis, characterization, and in vivo validation of photoNOD-1 and photoNOD-2, the first organic, NIR-photocontrolled nitric oxide (NO) donors that incorporate a PA readout of analyte release. These molecules consist of an aza-BODIPY dye appended with an aryl N-nitrosamine NO-donating moiety. The photoNODs exhibit chemostability to various biological stimuli, including redox-active metals and CYP450 enzymes, and demonstrate negligible cytotoxicity in the absence of irradiation. Upon single-photon NIR irradiation, photoNOD-1 and photoNOD-2 release NO as well as rNOD-1 or rNOD-2, PA-active products that enable ratiometric monitoring of NO release. Our in vitro studies show that, upon irradiation, photoNOD-1 and photoNOD-2 exhibit 46.6-fold and 21.5-fold ratiometric turn-ons, respectively. Moreover, unlike existing NIR NO donors, the photoNODs do not require encapsulation or multiphoton activation for use in live animals. In this study, we use PA tomography to monitor the local, irradiation-dependent release of NO from photoNOD-1 and photoNOD-2 in mice after subcutaneous treatment. In addition, we use a murine model for breast cancer to show that photoNOD-1 can selectively affect tumor growth rates in the presence of NIR light stimulation following systemic administration.


Assuntos
Neoplasias Mamárias Animais/tratamento farmacológico , Doadores de Óxido Nítrico/farmacologia , Técnicas Fotoacústicas , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Raios Infravermelhos , Injeções Subcutâneas , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Óxido Nítrico/análise , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/química , Distribuição Tecidual
4.
Nat Chem ; 8(7): 670-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27325093

RESUMO

S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper-thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but also shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)-S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.


Assuntos
Azurina/química , Azurina/síntese química , S-Nitrosotióis/química , Cobre/química , Cisteína , Ligação de Hidrogênio , Metaloproteínas/química , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/metabolismo , S-Nitrosotióis/metabolismo
5.
Biochemistry ; 54(39): 6071-81, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26352296

RESUMO

Cu(A) is a binuclear electron transfer (ET) center found in cytochrome c oxidases (CcOs), nitrous oxide reductases (N2ORs), and nitric oxide reductase (NOR). In these proteins, the Cu(A) centers facilitate efficient ET (kET > 104s⁻¹) under low thermodynamic driving forces (10-90 mV). While the structure and functional properties of Cu(A) are well understood, a detailed mechanism of the incorporation of copper into the protein and the identity of the intermediates formed during the Cu(A) maturation process are still lacking. Previous studies of the Cu(A) assembly mechanism in vitro using a biosynthetic model Cu(A) center in azurin (Cu(A)Az) identified a novel intermediate X (Ix) during reconstitution of the binuclear site. However, because of the instability of Ix and the coexistence of other Cu centers, such as Cu(A)' and type 1 copper centers, the identity of this intermediate could not be established. Here, we report the mechanism of Cu(A) assembly using variants of Glu114XCuAAz (X = Gly, Ala, Leu, or Gln), the backbone carbonyl of which acts as a ligand to the Cu(A) site, with a major focus on characterization of the novel intermediate Ix. We show that Cu(A) assembly in these variants proceeds through several types of Cu centers, such as mononuclear red type 2 Cu, the novel intermediate Ix, and blue type 1 Cu. Our results show that the backbone flexibility of the Glu114 residue is an important factor in determining the rates of T2Cu → Ix formation, suggesting that Cu(A) formation is facilitated by swinging of the ligand loop, which internalizes the T2Cu capture complex to the protein interior. The kinetic data further suggest that the nature of the Glu114 side chain influences the time scales on which these intermediates are formed, the wavelengths of the absorption peaks, and how cleanly one intermediate is converted to another. Through careful understanding of these mechanisms and optimization of the conditions, we have obtained Ix in ∼80-85% population in these variants, which allowed us to employ ultraviolet-visible, electron paramagnetic resonance, and extended X-ray absorption fine structure spectroscopic techniques to identify the Ix as a mononuclear Cu(Cys)(2)(His) complex. Because some of the intermediates have been proposed to be involved in the assembly of native Cu(A), these results shed light on the structural features of the important intermediates and mechanism of Cu(A) formation.


Assuntos
Azurina/química , Cobre/química , Thermus thermophilus/química , Domínio Catalítico , Cisteína/química , Espectroscopia por Absorção de Raios X
6.
J Am Chem Soc ; 136(35): 12337-44, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25082811

RESUMO

Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wild-type azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mössbauer and EPR spectroscopies, along with X-ray structural comparisons, revealed similarities and differences between Fe(II)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity.


Assuntos
Azurina/química , Proteínas de Bactérias/química , Ferroproteínas não Heme/química , Pseudomonas aeruginosa/química , Azurina/genética , Azurina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/química , Cristalografia por Raios X , Compostos Ferrosos/química , Modelos Moleculares , Mutação , Ferroproteínas não Heme/genética , Ferroproteínas não Heme/metabolismo , Oxirredução , Engenharia de Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Superóxidos/metabolismo
7.
Angew Chem Int Ed Engl ; 53(9): 2417-21, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24481708

RESUMO

A major barrier to understanding the mechanism of nitric oxide reductases (NORs) is the lack of a selective probe of NO binding to the nonheme FeB center. By replacing the heme in a biosynthetic model of NORs, which structurally and functionally mimics NORs, with isostructural ZnPP, the electronic structure and functional properties of the FeB nitrosyl complex was probed. This approach allowed observation of the first S=3/2 nonheme {FeNO}(7) complex in a protein-based model system of NOR. Detailed spectroscopic and computational studies show that the electronic state of the {FeNO}(7) complex is best described as a high spin ferrous iron (S=2) antiferromagnetically coupled to an NO radical (S=1/2) [Fe(2+)-NO(.)]. The radical nature of the FeB -bound NO would facilitate N-N bond formation by radical coupling with the heme-bound NO. This finding, therefore, supports the proposed trans mechanism of NO reduction by NORs.


Assuntos
Proteínas de Peixes/metabolismo , Ferro/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxirredutases/metabolismo , Cachalote/metabolismo , Animais , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Peixes/química , Ferro/química , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/química , Oxirredutases/química
8.
Inorg Chem ; 51(4): 2338-48, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22304696

RESUMO

A series of mixed-valence nickel-iron dithiolates is described. Oxidation of (diphosphine)Ni(dithiolate)Fe(CO)(3) complexes 1, 2, and 3 with ferrocenium salts affords the corresponding tricarbonyl cations [(dppe)Ni(pdt)Fe(CO)(3)](+) ([1](+)), [(dppe)Ni(edt)Fe(CO)(3)](+) ([2](+)) and [(dcpe)Ni(pdt)Fe(CO)(3)](+) ([3](+)), respectively, where dppe = Ph(2)PCH(2)CH(2)PPh(2), dcpe = Cy(2)PCH(2)CH(2)PCy(2), (Cy = cyclohexyl), pdtH(2) = HSCH(2)CH(2)CH(2)SH, and edtH(2) = HSCH(2)CH(2)SH. The cation [2](+) proved unstable, but the propanedithiolates are robust. IR and EPR spectroscopic measurements indicate that these species exist as C(s)-symmetric species. Crystallographic characterization of [3]BF(4) shows that Ni is square planar. Interaction of [1]BF(4) with P-donor ligands (L) afforded a series of substituted derivatives of type [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = P(OPh)(3) ([4a]BF(4)), P(p-C(6)H(4)Cl)(3) ([4b]BF(4)), PPh(2)(2-py) ([4c]BF(4)), PPh(2)(OEt) ([4d]BF(4)), PPh(3) ([4e]BF(4)), PPh(2)(o-C(6)H(4)OMe) ([4f]BF(4)), PPh(2)(o-C(6)H(4)OCH(2)OMe) ([4g]BF(4)), P(p-tol)(3) ([4h]BF(4)), P(p-C(6)H(4)OMe)(3) ([4i]BF(4)), and PMePh(2) ([4j]BF(4)). EPR analysis indicates that ethanedithiolate [2](+) exists as a single species at 110 K, whereas the propanedithiolate cations exist as a mixture of two conformers, which are proposed to be related through a flip of the chelate ring. Mössbauer spectra of 1 and oxidized S = 1/2 [4e]BF(4) are both consistent with a low-spin Fe(I) state. The hyperfine coupling tensor of [4e]BF(4) has a small isotropic component and significant anisotropy. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the SOMOs in complexes of the present type are localized in an Fe(I)-centered d(z(2)) orbital. The DFT calculations allow an assignment of oxidation states of the metals and rationalization of the conformers detected by EPR spectroscopy. Treatment of [1](+) with CN(-) and compact basic phosphines results in complex reactions. With dppe, [1](+) undergoes quasi-disproportionation to give 1 and the diamagnetic complex [(dppe)Ni(pdt)Fe(CO)(2)(dppe)](2+) ([5](2+)), which features square-planar Ni linked to an octahedral Fe center.


Assuntos
Materiais Biomiméticos/química , Hidrogenase/química , Ferro/química , Níquel/química , Compostos de Sulfidrila/química , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Fosfinas/química , Espectroscopia de Mossbauer
9.
J Am Chem Soc ; 132(29): 10093-101, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20608676

RESUMO

Interactions of the axial ligand with its blue copper center are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of the blue copper center with a weak axial ligand to a green copper center containing a medium strength axial ligand has been demonstrated in cupredoxins, converting the blue copper center to a red copper center with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (R(L)) of absorption at 447 nm over that at 621 nm. Whereas no axial Cu-S(Cys121) interaction in Met121Cys was detectable by extended X-ray absorption fine structure (EXAFS) spectroscopy at pH 5, similar to what was observed in native azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 A is clearly visible at higher pH. Despite the higher R(L) and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A( parallel) = 54 x 10(-4) cm(-1) at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A(parallel) = 87 x 10(-4) cm(-1) at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with a nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (R(L)= 1.5, and A(parallel) = 180 x 10(-4) cm(-1)) and Cu-S(Cys) distance (2.22 A) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys or homocysteine resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 +/- 3 mV for Met121Cys azurin and 113 +/- 6 mV for Met121Hcy azurin at pH 7. The results strongly support the "coupled distortion" model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions.


Assuntos
Azurina/química , Azurina/genética , Cobre , Cisteína , Homocisteína , Mutagênese Sítio-Dirigida/métodos , Sequência de Aminoácidos , Cor , Eletroquímica , Expressão Gênica , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Pseudomonas aeruginosa , Análise Espectral
10.
J Am Chem Soc ; 132(14): 5215-26, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20232870

RESUMO

Sco is a mononuclear red copper protein involved in the assembly of cytochrome c oxidase. It is spectroscopically similar to red copper nitrosocyanin, but unlike the latter, which has one copper cysteine thiolate, the former has two. In addition to the two cysteine ligands (C45 and C49), the wild-type (WT) protein from Bacillus subtilis (hereafter named BSco) has a histidine (H135) and an unknown endogenous protein oxygen ligand in a distorted tetragonal array. We have compared the properties of the WT protein to variants in which each of the two coordinating Cys residues has been individually mutated to Ala, using UV/visible, Cu and S K-edge X-ray absorption, electron paramagnetic resonance, and resonance Raman spectroscopies. Unlike the Cu(II) form of native Sco, the Cu(II) complexes of the Cys variants are unstable. The copper center of C49A undergoes autoreduction to the Cu(I) form, which is shown by extended X-ray absorption fine structure to be composed of a novel two-coordinate center with one Cys and one His ligand. C45A rearranges to a new stable Cu(II) species coordinated by C49, H135 and a second His ligand recruited from a previously uncoordinated protein side chain. The different chemistry exhibited by the Cys variants can be rationalized by whether a stable Cu(I) species can be formed by autoredox chemistry. For C49A, the remaining Cys and His residues are trans, which facilitates the formation of the highly stable two-coordinate Cu(I) species, while for C45A such a configuration cannot be attained. Resonance Raman spectroscopy of the WT protein indicates a net weak Cu-S bond strength at approximately 2.24 A corresponding to the two thiolate-copper bonds, whereas the single variant C45A shows a moderately strong Cu-S bond at approximately 2.16 A. S K-edge data give a total covalency of 28% for both Cu-S bonds in the WT protein. These data suggest an average covalency per Cu-S bond lower than that observed for nitrosocyanin and close to that expected for type-2 Cu(II)-thiolate systems. The data are discussed relative to the unique Cu-S characteristics of cupredoxins, from which it is concluded that Sco does not contain highly covalent Cu-S bonds of the type expected for long-range electron-transfer reactivity.


Assuntos
Alanina/química , Proteínas de Bactérias/química , Cobre/química , Cisteína/química , Proteínas de Membrana/química , Alanina/genética , Alanina/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Cisteína/genética , Cisteína/metabolismo , Variação Genética , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Espectrofotometria Ultravioleta , Análise Espectral Raman , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Espectroscopia por Absorção de Raios X
11.
Biochemistry ; 48(51): 12133-44, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19921776

RESUMO

Sco-like proteins contain copper bound by two cysteines and a histidine residue. Although their function is still incompletely understood, there is a clear involvement with the assembly of cytochrome oxidases that contain the Cu(A) center in subunit 2, possibly mediating the transfer of copper into the Cu(A) binuclear site. We are investigating the reaction chemistry of BSco, the homologue from Bacillus subtilis. Our studies have revealed that BSco behaves more like a redox protein than a metallochaperone. The essential H135 residue that coordinates copper plays a role in stabilizing the Cu(II) rather than the Cu(I) form. When H135 is mutated to alanine, the oxidation rate of both hydrogen peroxide and one-electron outer-sphere reductants increases by 3 orders of magnitude, suggestive of a redox switch mechanism between the His-on and His-off conformational states of the protein. Imidazole binds to the H135A protein, restoring the N superhyperfine coupling in the EPR, but is unable to rescue the redox properties of wild-type Sco. These findings reveal a unique role for H135 in Sco function. We propose a hypothesis that electron transfer from Sco to the maturing oxidase may be essential for proper maturation and/or protection from oxidative damage during the assembly process. The findings also suggest that interaction of Sco with its protein partner(s) may perturb the Cu(II)-H135 interaction and thus induce a sensitive redox activity to the protein.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cobre/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Variação Genética , Cinética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Oxirredução , Análise Espectral
12.
J Biol Chem ; 283(3): 1732-1743, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18029358

RESUMO

Helicases often achieve functional specificity through utilization of unique structural features incorporated into an otherwise conserved core. The archaeal Rad3 (xeroderma pigmentosum group D protein (XPD)) helicase is a prototypical member of the Rad3 family, distinct from other related (superfamily II) SF2 enzymes because of a unique insertion containing an iron-sulfur (FeS) cluster. This insertion may represent an auxiliary domain responsible for modifying helicase activity or for conferring specificity for selected DNA repair intermediates. The importance of the FeS cluster for the fine-tuning of Rad3-DNA interactions is illustrated by several clinically relevant point mutations in the FeS domain of human Bach1 (FancJ) and XPD helicases that result in distinct disease phenotypes. Here we analyzed the substrate specificity of the Rad3 (XPD) helicase from Ferroplasma acidarmanus (FacRad3) and probed the importance of the FeS cluster for Rad3-DNA interactions. We found that the FeS cluster stabilizes secondary structure of the auxiliary domain important for coupling of single-stranded (ss) DNA-dependent ATP hydrolysis to ssDNA translocation. Additionally, we observed specific quenching of the Cy5 fluorescent dye when the FeS cluster of a bound helicase is positioned in close proximity to a Cy5 fluorophore incorporated into the DNA molecule. Taking advantage of this Cy5 quenching, we developed an equilibrium assay for analysis of the Rad3 interactions with various DNA substrates. We determined that the FeS cluster-containing domain recognizes the ssDNA-double-stranded DNA junction and positions the helicase in an orientation consistent with duplex unwinding. Although it interacts specifically with the junction, the enzyme binds tightly to ssDNA, and the single-stranded regions of the substrate are the major contributors to the energetics of FacRad3-substrate interactions.


Assuntos
Trifosfato de Adenosina/metabolismo , Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , DNA Helicases/química , DNA Cruciforme/metabolismo , DNA de Cadeia Simples/metabolismo , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Transporte Biológico , Replicação do DNA , Hidrólise , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
13.
J Biol Chem ; 282(46): 33444-33451, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17893144

RESUMO

DNA primase synthesizes short RNA primers that are required to initiate DNA synthesis on the parental template strands during DNA replication. Eukaryotic primase contains two subunits, p48 and p58, and is normally tightly associated with DNA polymerase alpha. Despite the fundamental importance of primase in DNA replication, structural data on eukaryotic DNA primase are lacking. The p48/p58 dimer was subjected to limited proteolysis, which produced two stable structural domains: one containing the bulk of p48 and the other corresponding to the C-terminal fragment of p58. These domains were identified by mass spectrometry and N-terminal sequencing. The C-terminal p58 domain (p58C) was expressed, purified, and characterized. CD and NMR spectroscopy experiments demonstrated that p58C forms a well folded structure. The protein has a distinctive brownish color, and evidence from inductively coupled plasma mass spectrometry, UV-visible spectrophotometry, and EPR spectroscopy revealed characteristics consistent with the presence of a [4Fe-4S] high potential iron protein cluster. Four putative cysteine ligands were identified using a multiple sequence alignment, and substitution of just one was sufficient to cause loss of the iron-sulfur cluster and a reduction in primase enzymatic activity relative to the wild-type protein. The discovery of an iron-sulfur cluster in DNA primase that contributes to enzymatic activity provides the first suggestion that the DNA replication machinery may have redox-sensitive activities. Our results offer new horizons in which to investigate the function of high potential [4Fe-4S] clusters in DNA-processing machinery.


Assuntos
DNA Primase/química , DNA Primase/metabolismo , Proteínas Ferro-Enxofre/química , Sequência de Aminoácidos , Dicroísmo Circular , Cisteína/química , DNA/química , DNA Primase/fisiologia , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Espectrofotometria/métodos , Espectrofotometria Ultravioleta
14.
Inorg Chem ; 45(19): 7736-47, 2006 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-16961365

RESUMO

Electron paramagnetic resonance (EPR) spectra are presented for iron complexes of catecholate, tironate, and a 3,4-dihydroxyphenylalanine (DOPA)-containing peptide of sequence Ac-Ala-DOPA-Thr-Pro-CONH2 ("AdopaTP"). This peptide was prepared to model potential metal-protein cross-links in the adhesive used by marine mussels, Mytilus edulis, for affixing themselves to surfaces. Spectra are shown for iron bound to each ligand in mono, bis, and tris coordination environments. For example, the catecholate complexes {Fe(cat)}, {Fe(cat)2}, and [Fe(cat)3]3- are provided. Detailed simulations are presented to describe the origin of spectra for the iron-catecholate and iron-peptide species, which show that the spectral features can be accounted for only with the inclusion of D- and E-strain. The spectroscopy of each compound is shown under both anaerobic and aerobic conditions. When exposed to air, the high-spin Fe3+ signal of [Fe(AdopaTP)3]3- decreases and an organic radical is formed. No other sample exhibited an appreciable radical signal. These data are discussed in light of the biomaterial synthesis carried out by marine mussels.


Assuntos
Catecóis/química , Reagentes de Ligações Cruzadas/química , Ferro/química , Peptídeos/química , Adesividade , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Oceanos e Mares , Oxigênio/química
15.
J Biol Chem ; 281(48): 36482-91, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16973619

RESUMO

The Na(+)-pumping NADH-ubiquinone oxidoreductase has six polypeptide subunits (NqrA-F) and a number of redox cofactors, including a noncovalently bound FAD and a 2Fe-2S center in subunit F, covalently bound FMNs in subunits B and C, and a noncovalently bound riboflavin in an undisclosed location. The FMN cofactors in subunits B and C are bound to threonine residues by phosphoester linkages. A neutral flavin-semiquinone radical is observed in the oxidized enzyme, whereas an anionic flavin-semiquinone has been reported in the reduced enzyme. For this work, we have altered the binding ligands of the FMNs in subunits B and C by replacing the threonine ligands with other amino acids, and we studied the resulting mutants by EPR and electron nuclear double resonance spectroscopy. We conclude that the sodium-translocating NADH:quinone oxidoreductase forms three spectroscopically distinct flavin radicals as follows: 1) a neutral radical in the oxidized enzyme, which is observed in all of the mutants and most likely arises from the riboflavin; 2) an anionic radical observed in the fully reduced enzyme, which is present in wild type, and the NqrC-T225Y mutant but not the NqrB-T236Y mutant; 3) a second anionic radical, seen primarily under weakly reducing conditions, which is present in wild type, and the NqrB-T236Y mutant but not the NqrC-T225Y mutant. Thus, we can tentatively assign the first anionic radical to the FMN in subunit B and the second to the FMN in subunit C. The second anionic radical has not been reported previously. In electron nuclear double resonance spectra, it exhibits a larger line width and larger 8alpha-methyl proton splittings, compared with the first anionic radical.


Assuntos
Flavinas/química , Quinona Redutases/química , ATPase Trocadora de Sódio-Potássio/química , Vibrio cholerae/enzimologia , Sequência de Bases , Espectroscopia de Ressonância de Spin Eletrônica , Flavoproteínas/química , Radicais Livres , Ligantes , Modelos Estatísticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Sódio/química , Treonina/química
16.
J Am Chem Soc ; 127(47): 16548-58, 2005 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16305244

RESUMO

Sco1 is a mitochondrial membrane protein involved in the assembly of the CuA site of cytochrome c oxidase. The Bacillus subtilis genome contains a homologue of yeast Sco1, YpmQ (hereafter termed BSco), deletion of which leads to a phenotype lacking in caa3 (CuA-containing) oxidase activity but expressing normal levels of aa3 (quinol) oxidase activity. Here, we report the characterization of the metal binding site of BSco in its Cu(I)-, Cu(II)-, Zn(II)-, and Ni(II)-bound forms. Apo BSco was found to bind Cu(II), Zn(II), and Ni(II) at a 1:1 protein/metal ratio. The Cu(I) protein could be prepared by either dithionite reduction of the Cu(II) derivative or by reconstitution of the apo protein with Cu(I). X-ray absorption (XAS) spectroscopy showed that Cu(I) was coordinated by two cysteines at 2.22 +/- 0.01 A and by a weakly bound low-Z scatterer at 1.95 +/- 0.03 A. The Cu(II) derivative was reddish-orange and exhibited a strong type-2 thiolate to Cu(II) transition around 350 nm. Multifrequency electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and electron spin-echo envelope modulation (ESEEM) studies on the Cu(II) derivative provided evidence of one strongly coupled histidine residue, at least one strongly coupled cysteine, and coupling to an exchangeable proton. XAS spectroscopy indicated two cysteine ligands at 2.21 A and two O/N donor ligands at 1.95 A, at least one of which is derived from a coordinated histidine. The Zn(II) and Ni(II) derivatives were 4-coordinate with MS2N(His)X coordination. These results provide evidence that a copper chaperone can engage in redox chemistry at the metal center and may suggest interesting redox-based mechanisms for metalation of the mixed-valence CuA center of cytochrome c oxidase.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metais Pesados/química , Metais Pesados/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Cobre/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Modelos Moleculares , Dados de Sequência Molecular , Níquel/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria por Raios X , Zinco/metabolismo
17.
Biochemistry ; 43(38): 12322-30, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15379571

RESUMO

Many marine and pathogenic bacteria have a unique sodium-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), which generates an electrochemical Na(+) gradient during aerobic respiration. Na(+)-NQR consists of six subunits (NqrA-F) and contains five known redox cofactors: two covalently bound FMNs, one noncovalently bound FAD, one riboflavin, and one 2Fe-2S center. A stable neutral flavin-semiquinone radical is observed in the air-oxidized enzyme, while the NADH- or dithionite-reduced enzyme exhibits a stable anionic flavin-semiquinone radical. The NqrF subunit has been implicated in binding of both the 2Fe-2S cluster and the FAD. Four conserved cysteines (C70, C76, C79, and C111) in NqrF match the canonical 2Fe-2S motif, and three conserved residues (R210, Y212, S246) have been predicted to be part of a flavin binding domain. In this work, these two motifs have been altered by site-directed mutagenesis of individual residues and are confirmed to be essential for binding, respectively, the 2Fe-2S cluster and FAD. EPR spectra of the FAD-deficient mutants in the oxidized and reduced forms exhibit neutral and anionic flavo-semiquinone radical signals, respectively, demonstrating that the FAD in NqrF is not the source of either radical signal. In both the FAD and 2Fe-2S center mutants the line widths of the neutral and anionic flavo-semiquinone EPR signals are unchanged from the wild-type enzyme, indicating that neither of these centers is nearby or coupled to the radicals. Measurements of steady-state turnover using NADH, Q-1, and the artificial electron acceptor ferricyanide strongly support an electron transport pathway model in which the noncovalently bound FAD in the NqrF subunit is the initial electron acceptor and electrons then flow to the 2Fe-2S center.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ferro/metabolismo , Mutagênese/genética , Enxofre/metabolismo , Vibrio cholerae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Flavina-Adenina Dinucleotídeo/análise , Flavina-Adenina Dinucleotídeo/química , Ligantes , Dados de Sequência Molecular , Alinhamento de Sequência , Sódio/química , Sódio/metabolismo , Análise Espectral , Vibrio cholerae/genética
18.
J Am Chem Soc ; 126(23): 7244-56, 2004 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15186162

RESUMO

Azurin is a small electron-transfer protein belonging to the cupredoxin family. The Cu atom is located within a trigonal plane coordinated by two histidines (His46 and His117) and a cysteine (Cys112) with two more distant ligands (Gly45 and Met121) providing axial interactions. A Cys112SeCys derivative has been prepared by expressed protein ligation, and detailed UV/vis, EPR and EXAFS studies at the Cu and Se K-edges have been carried out. Marked changes are observed between the EPR parameters of the Cys112SeCys and WT azurin derivatives, which include a 2-fold increase in A(||), a decrease in g-values, and a large increase in rhombicity of the g-tensor. The Cu-Se and Se-Cu bond lengths obtained from analysis of the Cu and Se K-EXAFS of the oxidized protein were found to be 2.30 and 2.31 A, respectively, 0.14 A longer than the Cu-S distance of the WT protein. Unexpectedly, the Cu-Se bond lengths were found to undergo only minor changes during reduction, suggesting a very similar structure in both redox states and extending the "rack" hypothesis to the Se-substituted protein.


Assuntos
Azurina/química , Azurina/metabolismo , Cobre/metabolismo , Pseudomonas aeruginosa/química , Selenocisteína/metabolismo , Azurina/genética , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Análise de Fourier , Modelos Moleculares , Oxirredução , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Selenocisteína/química , Selenocisteína/genética , Espectrometria de Massas por Ionização por Electrospray
19.
Biochemistry ; 43(7): 1891-907, 2004 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-14967030

RESUMO

Site-directed spin labeling (SDSL), the site-specific incorporation of nitroxide spin-labels into a protein, has allowed us to investigate ligand-induced conformational changes in the ligand-binding domain of human estrogen receptor alpha (hERalpha-LBD). EPR (electron paramagnetic resonance) spectroscopy of the nitroxide probe attached to ER produces different spectra depending upon the identity of the bound ligand; these differences are indicative of changes in the type and degree of motional character of the spin-label induced by different ligand-induced conformations of labeled ER. Visual inspection of EPR spectra, construction of B versus C cross-correlation plots, and cross-comparison of spectral pairs using a relative squared difference (RSD) calculation allowed receptor-ligand complexes to be profiled according to their conformational character. Plotting B and C parameters allowed us to evaluate the liganded receptor according to the motional characteristics of the attached spin-label, and they were particularly illustrative for the receptor labeled at position 530, which had motion between the fast and intermediate regimes. RSD analysis allowed us to directly compare the similarity or difference between two different spectra, and these comparisons produced groupings that paralleled those seen in B versus C cross-correlation plots, again relating meaningfully with the pharmacological nature of the bound ligand. RSD analysis was also particularly useful for qualifying differences seen with the receptor labeled at position 417, which had motion between the intermediate and slow motional regimes. This work demonstrates that B and C formulas from EPR line shape theory are useful for qualitative analysis of spectra with differences subtler than those that are often analyzed by EPR spectroscopists. This work also provides evidence that the ER can exist in a range of conformations, with specific conformations resulting from preferential stabilization of ER by the bound ligand. Furthermore, it documents the complexity and uniqueness of the ligand-receptor structure, and highlights the fact that structural differences exist between the receptor bound with ligands of different pharmacological character that, nevertheless, produce similar crystal structures.


Assuntos
Estradiol/análogos & derivados , Mutagênese Sítio-Dirigida , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Marcadores de Spin , Substituição de Aminoácidos/genética , Sítios de Ligação , Óxidos N-Cíclicos/metabolismo , Cisteína/genética , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Estradiol/química , Estriol/química , Receptor alfa de Estrogênio , Estrona/química , Humanos , Análise dos Mínimos Quadrados , Ligantes , Modelos Lineares , Conformação Proteica , Estrutura Terciária de Proteína/genética , Receptores de Estrogênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
J Am Chem Soc ; 124(10): 2084-5, 2002 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11878940

RESUMO

Modulating the properties of proteins through de novo design or redesign of existing proteins has been a longstanding goal in protein chemistry. Over the past two decades, site-directed mutagenesis has been a powerful tool to probe the role of certain residues and to fine-tune the activity of proteins. A limitation of this approach has been the accessibility of only a restricted number of functional groups through the 20 amino acids in the genetic code. The more recent technique of expressed protein ligation (EPL) provides an alternative route that allows efficient incorporation of nonnatural residues into proteins. We report here the preparation and spectroscopic characterization of an azurin variant in which a cysteine ligand to the blue copper center has been replaced by EPL with selenocysteine (Sec). This reports marks the first time that selenocysteine is artificially incorporated into the active site of a metalloprotein. The variant displays a significantly increased A(parallel) (from 56 to 104 G) and red-shifted CT band (from 625 to 677 nm), while maintaining the general type 1 copper characteristics, including similarity in reduction potentials. This study illustrates that iso-structural substitution using EPL can fine-tune the structural and functional properties of a metal-binding site without loss of most of its characteristics. Further spectroscopic and X-ray crystallographic studies of this and other EPL variants will provide new insights into the fine-control of the structure and function of metalloproteins.


Assuntos
Azurina/química , Selenocisteína/análogos & derivados , Sequência de Aminoácidos , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Pseudomonas aeruginosa/química , Selenocisteína/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA