Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(5): 1073-1081, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35471821

RESUMO

We sought to develop a small-molecule activator of interferon regulatory factor 3 (IRF3), an essential innate immune transcription factor, which could potentially be used therapeutically in multiple disease settings. Using a high-throughput screen, we identified small-molecule entities that activate a type I interferon response, with minimal off-target NFκB activation. We identified 399 compounds at a hit rate of 0.24% from singlicate primary screening. Secondary screening included the primary hits and additional compounds with similar chemical structures obtained from other library sources and resulted in 142 candidate compounds. The hit compounds were sorted and ranked to identify compound groups with activity in both human and mouse backgrounds to facilitate animal model engagement for translational development. Chemical modifications within two groups of small molecules produced leads with improved activity over original hits. Furthermore, these leads demonstrated activity in ex vivo cytokine release assays from human blood- and mouse bone marrow-derived macrophages. Dependence on IRF3 was demonstrated using bone marrow-derived macrophages from IRF3-deficient mice, which were not responsive to the molecules. To identify the upstream pathway leading to IRF3 activation, we used a library of CRISPR knockout cell lines to test the key innate immune adaptor and receptor molecules. These studies indicated a surprising toll-interleukin-1 receptor-domain-containing-adapter-inducing interferon-ß-dependent but TLR3/4-independent mechanism of IRF3 activation.


Assuntos
Fator Regulador 3 de Interferon , Transdução de Sinais , Animais , Antivirais/farmacologia , Desenvolvimento de Medicamentos , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/metabolismo , Camundongos
2.
Front Immunol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733475

RESUMO

The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/agonistas , Alelos , Animais , Descoberta de Drogas , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos
3.
Artigo em Inglês | MEDLINE | ID: mdl-32540978

RESUMO

Toxoplasmosis is a potentially fatal infection for immunocompromised people and the developing fetus. Current medicines for toxoplasmosis have high rates of adverse effects that interfere with therapeutic and prophylactic regimens. Endochin-like quinolones (ELQs) are potent inhibitors of Toxoplasma gondii proliferation in vitro and in animal models of acute and latent infection. ELQ-316, in particular, was found to be effective orally against acute toxoplasmosis in mice and highly selective for T. gondii cytochrome b over human cytochrome b Despite its oral efficacy, the high crystallinity of ELQ-316 limits oral absorption, plasma concentrations, and therapeutic potential. A carbonate ester prodrug of ELQ-316, ELQ-334, was created to decrease crystallinity and increase oral bioavailability, which resulted in a 6-fold increase in both the maximum plasma concentration (Cmax) and the area under the curve (AUC) of ELQ-316. The increased bioavailability of ELQ-316, when administered as ELQ-334, resulted in efficacy against acute toxoplasmosis greater than that of an equivalent dose of ELQ-316 and had efficacy against latent toxoplasmosis similar to that of ELQ-316 administered intraperitoneally. Treatment with carbonate ester prodrugs is a successful strategy to overcome the limited oral bioavailability of ELQs for the treatment of toxoplasmosis.


Assuntos
Pró-Fármacos , Quinolonas , Toxoplasma , Toxoplasmose Animal , Animais , Encéfalo/parasitologia , Carbonatos , Ésteres , Camundongos , Toxoplasmose Animal/tratamento farmacológico
4.
EMBO Mol Med ; 11(12): e10489, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31660701

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.


Assuntos
Coenzima A/metabolismo , Dopamina/metabolismo , Ferro/metabolismo , Panteteína/análogos & derivados , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Genótipo , Camundongos , Panteteína/farmacologia , Panteteína/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
5.
Malar J ; 18(1): 291, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455339

RESUMO

BACKGROUND: The potential benefits of long-acting injectable chemoprotection (LAI-C) against malaria have been recently recognized, prompting a call for suitable candidate drugs to help meet this need. On the basis of its known pharmacodynamic and pharmacokinetic profiles after oral dosing, ELQ-331, a prodrug of the parasite mitochondrial electron transport inhibitor ELQ-300, was selected for study of pharmacokinetics and efficacy as LAI-C in mice. METHODS: Four trials were conducted in which mice were injected with a single intramuscular dose of ELQ-331 or other ELQ-300 prodrugs in sesame oil with 1.2% benzyl alcohol; the ELQ-300 content of the doses ranged from 2.5 to 30 mg/kg. Initial blood stage challenges with Plasmodium yoelii were used to establish the model, but the definitive study measure of efficacy was outcome after sporozoite challenge with a luciferase-expressing P. yoelii, assessed by whole-body live animal imaging. Snapshot determinations of plasma ELQ-300 concentration ([ELQ-300]) were made after all prodrug injections; after the highest dose of ELQ-331 (equivalent to 30 mg/kg ELQ-300), both [ELQ-331] and [ELQ-300] were measured at a series of timepoints from 6 h to 5½ months after injection. RESULTS: A single intramuscular injection of ELQ-331 outperformed four other ELQ-300 prodrugs and, at a dose equivalent to 30 mg/kg ELQ-300, protected mice against challenge with P. yoelii sporozoites for at least 4½ months. Pharmacokinetic evaluation revealed rapid and essentially complete conversion of ELQ-331 to ELQ-300, a rapidly achieved (< 6 h) and sustained (4-5 months) effective plasma ELQ-300 concentration, maximum ELQ-300 concentrations far below the estimated threshold for toxicity, and a distinctive ELQ-300 concentration versus time profile. Pharmacokinetic modeling indicates a high-capacity, slow-exchange tissue compartment which serves to accumulate and then slowly redistribute ELQ-300 into blood, and this property facilitates an extremely long period during which ELQ-300 concentration is sustained above a minimum fully-protective threshold (60-80 nM). CONCLUSIONS: Extrapolation of these results to humans predicts that ELQ-331 should be capable of meeting and far-exceeding currently published duration-of-effect goals for anti-malarial LAI-C. Furthermore, the distinctive pharmacokinetic profile of ELQ-300 after treatment with ELQ-331 may facilitate durable protection and enable protection for far longer than 3 months. These findings suggest that ELQ-331 warrants consideration as a leading prototype for LAI-C.


Assuntos
Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Plasmodium yoelii/efeitos dos fármacos , Quinolonas/efeitos adversos , Quinolonas/farmacocinética , Animais , Feminino , Camundongos , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacocinética
6.
ChemMedChem ; 14(20): 1771-1782, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31423734

RESUMO

Excessive mitochondrial matrix Ca2+ and oxidative stress leads to the opening of a high-conductance channel of the inner mitochondrial membrane referred to as the mitochondrial permeability transition pore (mtPTP). Because mtPTP opening can lead to cell death under diverse pathophysiological conditions, inhibitors of mtPTP are potential therapeutics for various human diseases. High throughput screening efforts led to the identification of a 3-carboxamide-5-phenol-isoxazole compounds as mtPTP inhibitors. While they showed nanomolar potency against mtPTP, they exhibited poor plasma stability, precluding their use in in vivo studies. Herein, we describe a series of structurally related analogues in which the core isoxazole was replaced with a triazole, which resulted in an improvement in plasma stability. These analogues were readily generated using the copper-catalyzed "click chemistry". One analogue, N-(5-chloro-2-methylphenyl)-1-(4-fluoro-3-hydroxyphenyl)-1H-1,2,3-triazole-4-carboxamide (TR001), was efficacious in a zebrafish model of muscular dystrophy that results from mtPTP dysfunction whereas the isoxazole isostere had minimal effect.


Assuntos
Isoxazóis/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Distrofias Musculares/tratamento farmacológico , Fenóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Isoxazóis/sangue , Isoxazóis/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Estrutura Molecular , Distrofias Musculares/metabolismo , Fenóis/sangue , Fenóis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Peixe-Zebra
7.
PLoS One ; 14(3): e0205623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30908483

RESUMO

To determine the target of the recently identified lead compound NSC130362 that is responsible for its selective anti-cancer efficacy and safety in normal cells, structure-activity relationship (SAR) studies were conducted. First, NSC13062 was validated as a starting compound for the described SAR studies in a variety of cell-based viability assays. Then, a small library of 1,4-naphthoquinines (1,4-NQs) and quinoline-5,8-diones was tested in cell viability assays using pancreatic cancer MIA PaCa-2 cells and normal human hepatocytes. The obtained data allowed us to select a set of both non-toxic compounds that preferentially induced apoptosis in cancer cells and toxic compounds that induced apoptosis in both cancer and normal cells. Anti-cancer activity of the selected non-toxic compounds was confirmed in viability assays using breast cancer HCC1187 cells. Consequently, the two sets of compounds were tested in multiple cell-based and in vitro activity assays to identify key factors responsible for the observed activity. Inhibition of the mitochondrial electron transfer chain (ETC) is a key distinguishing activity between the non-toxic and toxic compounds. Finally, we developed a mathematical model that was able to distinguish these two sets of compounds. The development of this model supports our conclusion that appropriate quantitative SAR (QSAR) models have the potential to be employed to develop anti-cancer compounds with improved potency while maintaining non-toxicity to normal cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , Modelos Teóricos , Neoplasias/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Células Tumorais Cultivadas
8.
Antimicrob Agents Chemother ; 60(8): 4972-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297476

RESUMO

Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L. donovani, with 50% inhibitory concentrations (IC50s) in the low micromolar range, but the structurally similar hydroxynaphthoquinone buparvaquone was by far the most potent inhibitor of electron transport, ATP production, and intracellular amastigote growth. Cytochrome bc1 is thus a promising target for novel antileishmanial drugs, and further improvements on the buparvaquone scaffold are warranted for development of enhanced therapeutics.


Assuntos
Antiprotozoários/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Leishmania/efeitos dos fármacos , Quinolonas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NAD/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
PLoS Pathog ; 11(12): e1005324, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646986

RESUMO

Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/imunologia , Proteínas de Membrana/agonistas , Transdução de Sinais/imunologia , Tiazinas/farmacologia , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Animais , Células Cultivadas , Vírus Chikungunya/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 109(39): 15936-41, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23019377

RESUMO

Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC(50) values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED(50) values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc(1) complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc(1) complex, and an M221Q amino acid substitution in the Q(i) site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q(i) site of the T. gondii cytochrome bc(1) complex.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Quinolinas/farmacologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Feminino , Humanos , Camundongos , Proteínas de Protozoários/antagonistas & inibidores , Ratos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Toxoplasma/enzimologia , Toxoplasmose/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA