Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Lancet Haematol ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39393368

RESUMO

The WHO and International Consensus Classification 2022 classifications of myelodysplastic syndromes enhance diagnostic precision and refine decision-making processes in these diseases. However, some discrepancies still exist and potentially cause inconsistency in their adoption in a clinical setting. We adopted a data-driven approach to provide a harmonisation between these two classification systems. We investigated the importance of genomic features and their effect on the cluster assignment process to define harmonised entity labels. A panel of expert haematologists, haematopathologists, and data scientists who are members of the International Consortium for Myelodysplastic Syndromes was formed and a modified Delphi consensus process was adopted to harmonise morphologically defined categories without a distinct genomic profile. The panel held regular online meetings and participated in a two-round survey using an online voting tool. We identified nine clusters with distinct genomic features. The cluster of highest hierarchical importance was characterised by biallelic TP53 inactivation. Cluster assignment was irrespective of blast count. Individuals with monoallelic TP53 inactivation were assigned to other clusters. Hierarchically, the second most important group included myelodysplastic syndromes with del(5q). Isolated del(5q) and less than 5% of blast cells in the bone marrow were the most relevant label-defining features. The third most important cluster included myelodysplastic syndromes with mutated SF3B1. The absence of isolated del(5q), del(7q)/-7, abn3q26.2, complex karyotype, RUNX1 mutations, or biallelic TP53 were the basis for a harmonised label of this category. Morphologically defined myelodysplastic syndrome entities showed large genomic heterogeneity that was not efficiently captured by single-lineage versus multilineage dysplasia, marrow blasts, hypocellularity, or fibrosis. We investigated the biological continuum between myelodysplastic syndromes with more than 10% bone marrow blasts and acute myeloid leukaemia, and found only a partial overlap in genetic features. After the survey, myelodysplastic syndromes with low blasts (ie, less than 5%) and myelodysplastic syndromes with increased blasts (ie, 5% or more) were recognised as disease entities. Our data-driven approach can efficiently harmonise current classifications of myelodysplastic syndromes and provide a reference for patient management in a real-world setting.

2.
Mod Pathol ; : 100615, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322118

RESUMO

Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous group of biologically distinct entities characterized by variable degrees of ineffective hematopoiesis. Recently, two classification systems (the 5th edition of the WHO Classification and the International Consensus Classification) further sub-characterized MDS into morphologic and genetically defined groups. Accurate diagnosis and subclassification of MDS require a multistep systemic approach. The International Consortium for MDS (icMDS) summarizes a contemporary, practical, and multimodal approach to MDS diagnosis and classification.

3.
Front Med ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115793

RESUMO

SETD2 is the only enzyme responsible for transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3). Mutations in SETD2 cause human diseases including cancer and developmental defects. In mice, Setd2 is essential for embryonic vascular remodeling. Given that many epigenetic modifiers have recently been found to possess noncatalytic functions, it is unknown whether the major function(s) of Setd2 is dependent on its catalytic activity or not. Here, we established a site-specific knockin mouse model harboring a cancer patient-derived catalytically dead Setd2 (Setd2-CD). We found that the essentiality of Setd2 in mouse development is dependent on its methyltransferase activity, as the Setd2CD/CD and Setd2-/- mice showed similar embryonic lethal phenotypes and largely comparable gene expression patterns. However, compared with Setd2-/-, the Setd2CD/CD mice showed less severe defects in allantois development, and single-cell RNA-seq analysis revealed differentially regulated allantois-specific 5' Hoxa cluster genes in these two models. Collectively, this study clarifies the importance of Setd2 catalytic activity in mouse development and provides a new model for comparative study of previously unrecognized Setd2 functions.

4.
Leukemia ; 38(9): 1894-1905, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997434

RESUMO

SF3B1 mutations frequently occur in cancer yet lack targeted therapies. Clinical trials of XPO1 inhibitors, selinexor and eltanexor, in high-risk myelodysplastic neoplasms (MDS) revealed responders were enriched with SF3B1 mutations. Given that XPO1 (Exportin-1) is a nuclear exporter responsible for the export of proteins and multiple RNA species, this led to the hypothesis that SF3B1-mutant cells are sensitive to XPO1 inhibition, potentially due to altered splicing. Subsequent RNA sequencing after XPO1 inhibition in SF3B1 wildtype and mutant cells showed increased nuclear retention of RNA transcripts and increased alternative splicing in the SF3B1 mutant cells particularly of genes that impact apoptotic pathways. To identify novel drug combinations that synergize with XPO1 inhibition, a forward genetic screen was performed with eltanexor treatment implicating anti-apoptotic targets BCL2 and BCLXL, which were validated by functional testing in vitro and in vivo. These targets were tested in vivo using Sf3b1K700E conditional knock-in mice, which showed that the combination of eltanexor and venetoclax (BCL2 inhibitor) had a preferential sensitivity for SF3B1 mutant cells without excessive toxicity. In this study, we unveil the mechanisms underlying sensitization to XPO1 inhibition in SF3B1-mutant MDS and preclinically rationalize the combination of eltanexor and venetoclax for high-risk MDS.


Assuntos
Transporte Ativo do Núcleo Celular , Proteína Exportina 1 , Carioferinas , Mutação , Fosfoproteínas , Fatores de Processamento de RNA , Receptores Citoplasmáticos e Nucleares , Sulfonamidas , Triazóis , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Animais , Camundongos , Humanos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Carioferinas/genética , Carioferinas/antagonistas & inibidores , Triazóis/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hidrazinas/farmacologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Transporte de RNA , Apoptose , Proteína bcl-X/genética , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Hemasphere ; 8(5): e69, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774655

RESUMO

Notable treatment advances have been made in recent years for patients with myelodysplastic syndromes/neoplasms (MDS), and several new drugs are under development. For example, the emerging availability of oral MDS therapies holds the promise of improving patients' health-related quality of life (HRQoL). Within this rapidly evolving landscape, the inclusion of HRQoL and other patient-reported outcomes (PROs) is critical to inform the benefit/risk assessment of new therapies or to assess whether patients live longer and better, for what will likely remain a largely incurable disease. We provide practical considerations to support investigators in generating high-quality PRO data in future MDS trials. We first describe several challenges that are to be thoughtfully considered when designing an MDS-focused clinical trial with a PRO endpoint. We then discuss aspects related to the design of the study, including PRO assessment strategies. We also discuss statistical approaches illustrating the potential value of time-to-event analyses and their implications within the estimand framework. Finally, based on a literature review of MDS randomized controlled trials with a PRO endpoint, we note the PRO items that deserve special attention when reporting future MDS trial results. We hope these practical considerations will facilitate the generation of rigorous PRO data that can robustly inform MDS patient care and support treatment decision-making for this patient population.

6.
Nat Commun ; 15(1): 3415, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649367

RESUMO

An important epigenetic component of tyrosine kinase signaling is the phosphorylation of histones, and epigenetic readers, writers, and erasers. Phosphorylation of protein arginine methyltransferases (PRMTs), have been shown to enhance and impair their enzymatic activity. In this study, we show that the hyperactivation of Janus kinase 2 (JAK2) by the V617F mutation phosphorylates tyrosine residues (Y149 and Y334) in coactivator-associated arginine methyltransferase 1 (CARM1), an important target in hematologic malignancies, increasing its methyltransferase activity and altering its target specificity. While non-phosphorylatable CARM1 methylates some established substrates (e.g. BAF155 and PABP1), only phospho-CARM1 methylates the RUNX1 transcription factor, on R223 and R319. Furthermore, cells expressing non-phosphorylatable CARM1 have impaired cell-cycle progression and increased apoptosis, compared to cells expressing phosphorylatable, wild-type CARM1, with reduced expression of genes associated with G2/M cell cycle progression and anti-apoptosis. The presence of the JAK2-V617F mutant kinase renders acute myeloid leukemia (AML) cells less sensitive to CARM1 inhibition, and we show that the dual targeting of JAK2 and CARM1 is more effective than monotherapy in AML cells expressing phospho-CARM1. Thus, the phosphorylation of CARM1 by hyperactivated JAK2 regulates its methyltransferase activity, helps select its substrates, and is required for the maximal proliferation of malignant myeloid cells.


Assuntos
Apoptose , Subunidade alfa 2 de Fator de Ligação ao Core , Janus Quinase 2 , Proteína-Arginina N-Metiltransferases , Tirosina , Humanos , Fosforilação , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Tirosina/metabolismo , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metilação , Especificidade por Substrato , Células HEK293 , Ciclo Celular , Mutação
7.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917239

RESUMO

ASXL1 mutation frequently occurs in all forms of myeloid malignancies and is associated with aggressive disease and poor prognosis. ASXL1 recruits Polycomb repressive complex 2 (PRC2) to specific gene loci to repress transcription through trimethylation of histone H3 on lysine 27 (H3K27me3). ASXL1 alterations reduce H3K27me3 levels, which results in leukemogenic gene expression and the development of myeloid malignancies. Standard therapies for myeloid malignancies have limited efficacy when mutated ASXL1 is present. We discovered upregulation of lysine demethylase 6B (KDM6B), a demethylase for H3K27me3, in ASXL1-mutant leukemic cells, which further reduces H3K27me3 levels and facilitates myeloid transformation. Here, we demonstrated that heterozygous deletion of Kdm6b restored H3K27me3 levels and normalized dysregulated gene expression in Asxl1Y588XTg hematopoietic stem/progenitor cells (HSPCs). Furthermore, heterozygous deletion of Kdm6b decreased the HSPC pool, restored their self-renewal capacity, prevented biased myeloid differentiation, and abrogated progression to myeloid malignancies in Asxl1Y588XTg mice. Importantly, administration of GSK-J4, a KDM6B inhibitor, not only restored H3K27me3 levels but also reduced the disease burden in NSG mice xenografted with human ASXL1-mutant leukemic cells in vivo. This preclinical finding provides compelling evidence that targeting KDM6B may be a therapeutic strategy for myeloid malignancies with ASXL1 mutations.


Assuntos
Histonas , Neoplasias , Humanos , Camundongos , Animais , Histonas/metabolismo , Lisina , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
8.
Blood Rev ; 62: 101128, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704469

RESUMO

The guidelines for classification, prognostication, and response assessment of myelodysplastic syndromes/neoplasms (MDS) have all recently been updated. In this report on behalf of the International Consortium for MDS (icMDS) we summarize these developments. We first critically examine the updated World Health Organization (WHO) classification and the International Consensus Classification (ICC) of MDS. We then compare traditional and molecularly based risk MDS risk assessment tools. Lastly, we discuss limitations of criteria in measuring therapeutic benefit and highlight how the International Working Group (IWG) 2018 and 2023 response criteria addressed these deficiencies and are endorsed by the icMDS. We also address the importance of patient centered care by discussing the value of quality-of-life assessment. We hope that the reader of this review will have a better understanding of how to classify MDS, predict clinical outcomes and evaluate therapeutic outcomes.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Medição de Risco , Qualidade de Vida , Prognóstico
9.
EMBO Rep ; 24(10): e57032, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37650863

RESUMO

Bromodomain-containing protein 4 (BRD4) is overexpressed and functionally implicated in various myeloid malignancies. However, the role of BRD4 in normal hematopoiesis remains largely unknown. Here, utilizing an inducible Brd4 knockout mouse model, we find that deletion of Brd4 (Brd4Δ/Δ ) in the hematopoietic system impairs hematopoietic stem cell (HSC) self-renewal and differentiation, which associates with cell cycle arrest and senescence. ATAC-seq analysis shows increased chromatin accessibility in Brd4Δ/Δ hematopoietic stem/progenitor cells (HSC/HPCs). Genome-wide mapping with cleavage under target and release using nuclease (CUT&RUN) assays demonstrate that increased global enrichment of H3K122ac and H3K4me3 in Brd4Δ/Δ HSC/HPCs is associated with the upregulation of senescence-specific genes. Interestingly, Brd4 deletion increases clipped H3 (cH3) which correlates with the upregulation of senescence-specific genes and results in a higher frequency of senescent HSC/HPCs. Re-expression of BRD4 reduces cH3 levels and rescues the senescence rate in Brd4Δ/Δ HSC/HPCs. This study unveils an important role of BRD4 in HSC/HPC function by preventing H3 clipping and suppressing senescence gene expression.


Assuntos
Histonas , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Senescência Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese
10.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200093

RESUMO

During emergency hematopoiesis, hematopoietic stem cells (HSCs) rapidly proliferate to produce myeloid and lymphoid effector cells, a response that is critical against infection or tissue injury. If unresolved, this process leads to sustained inflammation, which can cause life-threatening diseases and cancer. Here, we identify a role of double PHD fingers 2 (DPF2) in modulating inflammation. DPF2 is a defining subunit of the hematopoiesis-specific BAF (SWI/SNF) chromatin-remodeling complex, and it is mutated in multiple cancers and neurological disorders. We uncovered that hematopoiesis-specific Dpf2-KO mice developed leukopenia, severe anemia, and lethal systemic inflammation characterized by histiocytic and fibrotic tissue infiltration resembling a clinical hyperinflammatory state. Dpf2 loss impaired the polarization of macrophages responsible for tissue repair, induced the unrestrained activation of Th cells, and generated an emergency-like state of HSC hyperproliferation and myeloid cell-biased differentiation. Mechanistically, Dpf2 deficiency resulted in the loss of the BAF catalytic subunit BRG1 from nuclear factor erythroid 2-like 2-controlled (NRF2-controlled) enhancers, impairing the antioxidant and antiinflammatory transcriptional response needed to modulate inflammation. Finally, pharmacological reactivation of NRF2 suppressed the inflammation-mediated phenotypes and lethality of Dpf2Δ/Δ mice. Our work establishes an essential role of the DPF2-BAF complex in licensing NRF2-dependent gene expression in HSCs and immune effector cells to prevent chronic inflammation.


Assuntos
Cromatina , Neoplasias , Camundongos , Animais , Antioxidantes , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Montagem e Desmontagem da Cromatina , Inflamação/genética , Expressão Gênica , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cell Rep ; 42(1): 112027, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36848231

RESUMO

TET2 haploinsufficiency is a driving event in myeloid cancers and is associated with a worse prognosis in patients with acute myeloid leukemia (AML). Enhancing residual TET2 activity using vitamin C increases oxidized 5-methylcytosine (mC) formation and promotes active DNA demethylation via base excision repair (BER), which slows leukemia progression. We utilize genetic and compound library screening approaches to identify rational combination treatment strategies to improve use of vitamin C as an adjuvant therapy for AML. In addition to increasing the efficacy of several US Food and Drug Administration (FDA)-approved drugs, vitamin C treatment with poly-ADP-ribosyl polymerase inhibitors (PARPis) elicits a strong synergistic effect to block AML self-renewal in murine and human AML models. Vitamin-C-mediated TET activation combined with PARPis causes enrichment of chromatin-bound PARP1 at oxidized mCs and γH2AX accumulation during mid-S phase, leading to cell cycle stalling and differentiation. Given that most AML subtypes maintain residual TET2 expression, vitamin C could elicit broad efficacy as a PARPi therapeutic adjuvant.


Assuntos
Leucemia , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Humanos , Camundongos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais , Vitaminas
12.
Blood ; 141(19): 2359-2371, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36626250

RESUMO

Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.


Assuntos
Antineoplásicos , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Segunda Neoplasia Primária , Humanos , Melfalan , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante Autólogo/efeitos adversos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Segunda Neoplasia Primária/induzido quimicamente , Segunda Neoplasia Primária/genética , Antineoplásicos/farmacologia
15.
Leuk Res Rep ; 17: 100328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663282

RESUMO

Objectives: Patient education resources that address barriers to health literacy to improve understanding and outcomes in myelodysplastic syndromes (MDS) are limited. The aim of this study was to evaluate the impact and outcomes benefits of An Animated Patient's Guide to Myelodysplastic Syndromes (MDS) cancer educational modules (which includes the 'You and MDS' website and YouTube hosted resources) related to MDS education, awareness, understanding and health outcomes. Methods: This was a retrospective study of learner feedback, metrics, and utilization data from July 2018 to August 2021. We evaluated audience reach (number of visit sessions, unique visitors, page views) and calculated top views by media type (animation, expert video, patient video, and slide show) and top retention videos from the modules. We also assessed the educational impact and utilization through learner feedback surveys. Results: During the study period, 'You and MDS' had 233,743 views worldwide of which 104,214 were unique visitors and 78,161 (or 76% unique visitors) were from the United States. Of these, 61% were patients; 29% family members or caregivers; 5% were healthcare providers and 5% represented other groups. Most popular topics viewed among the animations were "Understanding Myelodysplastic Syndromes (MDS)" (40,219 views), "Managing and Treating MDS" (19,240 views), "Understanding Erythropoiesis" (17,564 views.) The most popular expert videos viewed were "What is iron overload, and how it is treated?" (20,310 views), "How serious a cancer is MDS? What is the prognosis for MDS?" (8,327 views), "What is MDS?" (3,157 views). Of participants who completed the online feedback survey, ≥ 95% reported improved knowledge gains and commitments to change. Conclusions: MDS patients using 'You and MDS - An Animated Patient's Guide to MDS' and its visual formats of learning represented a wide U.S. and global learner audience. This MDS educational resource had a significant impact on improved understanding among patients, families, and caregivers. Continued efforts should be made to provide patient-effective resources that address health literacy, improve patient understanding, and address educational needs that respond to the concerns of patients to achieve better quality of life and improved health outcomes in MDS.

16.
Cancer Res ; 82(11): 2047-2056, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35320354

RESUMO

Innate immune cells participate in the detection of tumor cells via complex signaling pathways mediated by pattern-recognition receptors, such as Toll-like receptors and nucleotide-binding and oligomerization domain-like receptors. These pathways are finely tuned via multiple mechanisms, including epigenetic regulation. It is well established that hematopoietic progenitors generate innate immune cells that can regulate cancer cell behavior, and the disruption of normal hematopoiesis in pathologic states may lead to altered immunity and the development of cancer. In this review, we discuss the epigenetic and transcriptional mechanisms that underlie the initiation and amplification of innate immune signaling in cancer. We also discuss new targeting possibilities for cancer control that exploit innate immune cells and signaling molecules, potentially heralding the next generation of immunotherapy.


Assuntos
Epigênese Genética , Imunidade Inata , Neoplasias , Receptores Toll-Like/metabolismo , Humanos , Imunidade Inata/genética , Neoplasias/imunologia , Transdução de Sinais , Receptores Toll-Like/genética , Transcrição Gênica
17.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622806

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Fatores de Transcrição de p300-CBP/genética , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética , Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/metabolismo , Camundongos , Mutação , Síndromes Mielodisplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Taxa de Sobrevida
18.
Sci Adv ; 7(36): eabh1684, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516911

RESUMO

INTS11, the catalytic subunit of the Integrator (INT) complex, is crucial for the biogenesis of small nuclear RNAs and enhancer RNAs. However, the role of INTS11 in hematopoietic stem and progenitor cell (HSPC) biology is unknown. Here, we report that INTS11 is required for normal hematopoiesis and hematopoietic-specific genetic deletion of Ints11 leads to cell cycle arrest and impairment of fetal and adult HSPCs. We identified a novel INTS11-interacting protein complex, Polycomb repressive complex 2 (PRC2), that maintains HSPC functions. Loss of INTS11 destabilizes the PRC2 complex, decreases the level of histone H3 lysine 27 trimethylation (H3K27me3), and derepresses PRC2 target genes. Reexpression of INTS11 or PRC2 proteins in Ints11-deficient HSPCs restores the levels of PRC2 and H3K27me3 as well as HSPC functions. Collectively, our data demonstrate that INTS11 is an essential regulator of HSPC homeostasis through the INTS11-PRC2 axis.

19.
Oncogene ; 40(40): 5950-5962, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34373577

RESUMO

The activity of Rho family GTPase protein, RAC1, which plays important normal physiological functions, is dysregulated in multiple cancers. RAC1 is expressed in both estrogen receptor alpha (ER)-positive and ER-negative breast cancer (BC) cells. However, ER-positive BC is more sensitive to RAC1 inhibition. We have determined that reducing RAC1 activity, using siRNA or EHT 1864 (a small molecule Rac inhibitor), leads to rapid ER protein degradation. RAC1 interacts with ER within the ER complex and RAC1 localizes to chromatin binding sites for ER upon estrogen treatment. RAC1 activity is important for RNA Pol II function at both promoters and enhancers of ER target genes and ER-regulated gene transcription is blocked by EHT 1864, in a dose-dependent manner. Having identified that RAC1 is an essential ER cofactor for ER protein stability and ER transcriptional activity, we report that RAC1 inhibition could be an effective therapeutic approach for ER-positive BC.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Feminino , Humanos , Transfecção
20.
Cell Rep ; 36(4): 109421, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320342

RESUMO

Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.


Assuntos
Diferenciação Celular , Fosfatases de Especificidade Dupla , Megacariócitos , Fosfatases da Proteína Quinase Ativada por Mitógeno , Adulto , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Arginina/metabolismo , Linhagem Celular , Fosfatases de Especificidade Dupla/metabolismo , Estabilidade Enzimática , Células HEK293 , Sistema de Sinalização das MAP Quinases , Megacariócitos/citologia , Megacariócitos/enzimologia , Metilação , Camundongos Endogâmicos C57BL , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Síndromes Mielodisplásicas/enzimologia , Síndromes Mielodisplásicas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Poliubiquitina/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteólise , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA