Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Placenta ; 151: 67-78, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723477

RESUMO

INTRODUCTION: Interleukin-1 beta (IL-1ß) can promote cell migration, invasion and metastasis in various cancer cells. The mechanism of its role in human trophoblast has not been fully investigated. Therefore, we aimed to investigate the expression level of IL-1ß in first trimester decidua and placenta and its potential role in regulation of extravillous trophoblast cell (EVT) invasion and migration. METHODS: First trimester placenta and decidua were collected to study the expression levels of IL-1ß and its receptors by immunohistochemical staining. Primary isolates of first trimester EVT or the HTR-8/SVneo trophoblast like cell line were used to assess migration and invasion. Matrix metalloproteinase levels were assessed by gelatin zymography and ELISA. The phosphorylation profile of signaling pathway proteins was detected with the Proteome Profiler Human Phospho-Kinase Array Kit. Differentially expressed proteins in cells was detected and verified by Western Blot. RESULTS: IL-1ß, its receptors and antagonist are expressed in first trimester placenta and decidua, exogenous IL-1ß stimulates trophoblast cell outgrowth, migration and invasion through the ERK signaling pathway. IL-1ß was significantly increased in the placenta at 6-7 weeks gestation compared with 8-9 weeks gestation (P < 0.0001). Transwell and RTCA assays indicated that IL-1ß stimulates the invasion and migration of EVT. In addition, IL-1ß promoted the phosphorylation of ERK 1/2. It also promoted the expression of MMP2 and MMP9 in EVT as demonstrated by gelatin zymography assay and enzyme linked immunosorbent assay. DISCUSSION: This study demonstrated IL-1ß expression in placenta and decidua, and that it regulates EVT invasion and migration.


Assuntos
Movimento Celular , Interleucina-1beta , Sistema de Sinalização das MAP Quinases , Primeiro Trimestre da Gravidez , Trofoblastos , Humanos , Feminino , Gravidez , Trofoblastos/metabolismo , Movimento Celular/fisiologia , Primeiro Trimestre da Gravidez/metabolismo , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Placenta/metabolismo , Decídua/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
3.
J Ovarian Res ; 16(1): 81, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087461

RESUMO

BACKGROUND: Heat shock protein 60 (HSP60) is essential for the folding and assembly of newly imported proteins to the mitochondria. HSP60 is overexpressed in most types of cancer, but its association with ovarian cancer is still in dispute. SKOV3 and OVCAR3 were used as experimental models after comparing the expression level of mitochondrial HSP60 in a normal human ovarian epithelial cell line and four ovarian cancer cell lines. RESULTS: Low HSPD1 (Heat Shock Protein Family D (HSP60) Member 1) expression was associated with unfavorable prognosis in ovarian cancer patients. Knockdown of HSPD1 significantly promoted the proliferation and migration of ovarian cancer cells. The differentially expressed proteins after HSPD1 knockdown were enriched in the lipoic acid (LA) biosynthesis and metabolism pathway, in which mitochondrial 3-oxoacyl-ACP synthase (OXSM) was the most downregulated protein and responsible for lipoic acid synthesis. HSP60 interacted with OXSM and overexpression of OXSM or LA treatment could reverse proliferation promotion mediated by HSPD1 knockdown. CONCLUSIONS: HSP60 interacted with OXSM and maintained its stability. Knockdown of HSPD1 could promote the proliferation and migration of SKOV3 and OVCAR3 via lowering the protein level of OXSM and LA synthesis.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Proliferação de Células , Chaperonina 60 , Neoplasias Ovarianas , Ácido Tióctico , Feminino , Humanos , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas de Choque Térmico , Proteínas Mitocondriais/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Ácido Tióctico/farmacologia
4.
Cell Oncol (Dordr) ; 46(3): 571-587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36580262

RESUMO

BACKGROUND: Ezrin, known as a crosslinker between the plasma membrane and actin cytoskeleton, is closely associated with breast cancer (BC) progression. Here, we explored a novel role of ezrin in breast cancer liver metastasis (BCLM). METHODS: The clinical relevance of ezrin was evaluated using in silico tools and confirmed in BC specimens. The effect of ezrin on proliferation, migration and invasion was examined in vitro and in vivo using murine primary liver-metastatic breast cancer cells (mLM). The molecular mechanism involved in ezrin-mediated activation of the Notch1 signaling pathway was elucidated using in vitro models. RESULTS: Data-mining demonstrated that ezrin mRNA and protein expression is up-regulated in breast cancer cohorts and has prognostic significance. Ezrin overexpression promotes cell proliferation, migration and invasion in vitro and in vivo. Hairy and enhancer of split-1 (Hes1) is one of the most significantly enriched candidates of differentially expressed genes in ezrin overexpression and control mLM cells. Ezrin can positively regulate Hes1 mRNA and protein expression, and their coexpression was associated with poor prognosis in BC patients. Ezrin promoted BC cell proliferation in a Hes1-dependent manner without directly interacting with Hes1. The functional link between ezrin and Hes1 is dependent on Notch1 activation through promotion of furin-like convertase cleavage. CONCLUSION: Our results demonstrated that ezrin drives BCLM through activation of the Notch signaling pathway via furin-like convertase. These findings provide a better understanding of the mechanism of ezrin in breast cancer progression, with the goal of discovering a novel target for the treatment of BCLM in the future.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Furina , RNA Mensageiro , Linhagem Celular Tumoral , Receptor Notch1/genética , Melanoma Maligno Cutâneo
5.
J Reprod Immunol ; 150: 103494, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176662

RESUMO

Remodeling of the uterine spiral arteries is required for a successful pregnancy. This process requires the co-ordinated activity of a number of different cell types including uterine natural killer cells, decidual macrophages, extravillous trophoblast cells, vascular smooth muscle cells and endothelial cells. We have previously demonstrated that decidual macrophages facilitate breakdown of fibronectin and laminin in a model of spiral artery remodeling. The aim of the current study was to determine which matrix metalloproteinases (MMPs) decidual macrophages express and play roles in extracellular matrix (ECM) breakdown in vascular remodeling. Decidual macrophages were isolated from first trimester decidua and cultured for 24 h to obtain conditioned medium. MMP secretion was assessed by a membrane based array and immunohistochemistry of decidual sections. In addition, the chorionic plate artery (CPA) model was used with decidual macrophage conditioned medium, with and without a MMP3 inhibitor and ECM protein expression assessed using quickscore. The decidual macrophages secreted a wide range of MMPs, with MMP3 being the most predominant. Co-localization of MMP3 to decidual macrophages was confirmed by immunohistochemistry. Decidual macrophage conditioned medium facilitated breakdown of laminin and fibronectin in the CPA model, an effect that was abrogated by the MMP3 inhibitor. These data further support the role of decidual macrophages in tissue remodeling in the first trimester of pregnancy. An alteration in their numbers or phenotype would impact spiral artery remodeling and contribute to the etiology of a number of complications of pregnancy.


Assuntos
Decídua , Fibronectinas , Meios de Cultivo Condicionados/metabolismo , Decídua/metabolismo , Células Endoteliais , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Laminina/farmacologia , Macrófagos/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/fisiologia , Artéria Uterina
6.
Cancer Commun (Lond) ; 41(1): 62-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-34236149

RESUMO

BACKGROUND: Immunotherapy has been shown to be a promising strategy against human cancers. A better understanding of the immune regulation in hepatocellular carcinoma (HCC) could help the development of immunotherapy against HCC. The epidermal growth factor receptor (EGFR) signaling is frequently activated in HCC and plays important roles in tumorigenesis. However, its role in HCC immunity is still largely unknown. This study aimed to investigate the impact of EGFR signaling on programmed death-ligand 1 (PD-L1) and human leukocyte antigen class-I (HLA-I) expression in HCC cells and its underlying mechanisms. METHODS: The expression of phosphorylated EGFR (p-EGFR), PD-L1, and HLA-I (HLA-ABC) in HCC specimens was detected by immunohistochemistry, and their correlations were analyzed. PD-L1 and HLA-ABC expression in EGFR-activated HCC cells were detected by quantitative real-time PCR, Western blotting, and flow cytometry, and T cell-mediated lysis was performed to test the immunosuppressive effects of PD-L1 and HLA-ABC alterations in HCC cells. Furthermore, the underlying mechanisms of EGFR activation-induced PD-L1 up-regulation and HLA-ABC down-regulation were explored by animal experiments, luciferase reporter assay, and gene gain- and loss-of-function studies. RESULTS: p-EGFR was positively correlated with PD-L1 and negatively correlated with HLA-ABC expression in HCCs. EGFR activation by its ligand EGF up-regulated PD-L1 and down-regulated HLA-ABC in HCC cells, which was functionally important and could be abolished by the EGFR inhibitor, gefitinib, both in vitro and in vivo. Mechanistically, enhanced P38 mitogen-activated protein kinase (MAPK) activation down-regulated microRNA-675-5p (miR-675-5p) and up-regulated glycolysis-related enzyme hexokinase 2 (HK2); miR-675-5p down-regulation enhanced the stability of PD-L1 mRNA probably via the 3'-untranslated region (3'-UTR) of PD-L1 and thereby caused PD-L1 accumulation, and HK2 up-regulation enhanced aerobic glycolysis and mediated a decrease in HLA-ABC. CONCLUSIONS: The EGFR-P38 MAPK axis could up-regulate PD-L1 through miR-675-5p and down-regulate HLA-ABC via HK2 in HCC cells. Our study reveals a novel signaling network that may cause immune suppression in HCC and suggests that EGFR signaling can be targeted for HCC immunotherapy.


Assuntos
Antígeno B7-H1/genética , Carcinoma Hepatocelular , Antígenos HLA/genética , Hexoquinase/metabolismo , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas Quinases p38 Ativadas por Mitógeno
7.
Mol Hum Reprod ; 27(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33629098

RESUMO

Extravillous trophoblast cell (EVT) invasion is tightly controlled, and its dysregulation can lead to altered spiral artery remodeling and contribute to a number of different pregnancy complications. Angiopoietin-2 (Ang-2) is expressed by trophoblast cells and various cells in the decidua, and trophoblast cells express its receptor, Tie2. Ang-2 has been shown to play roles in tumor progression and metastasis but it is not known if it also regulates EVT invasion. Here, we show that both the HTR-8/SVneo cell line and primary isolates of human EVT expressed various integrins and the Tie2 receptor, and Ang-2 stimulated their migration and/or invasion. Ang-2 increased expression of matrix metalloproteinase (MMP)2 and MMP9, altered the cytoskeleton of HTR-8/SVneo cells and also induced phosphorylation of Tie2, JNK and c-Jun. Inhibition of p-JNK (using SP600125) blocked the Ang-2 induced invasion of HTR-8/SVneo cells. In addition, inhibition of Tie2 (pexmetinib) and integrin signaling (RGDS and ATN-161) also blocked Ang-2-induced invasion. In conclusion, we demonstrate that Ang-2 can stimulate EVT invasion via a mechanism associated with activation of both the Tie2 receptor and integrins, which appear to work through different pathways; Tie2 through the JNK/c-JUN pathway and integrins through an as yet unidentified pathway(s). We therefore propose that any alterations in Ang-2 expression in the decidua would lead to an imbalance in pro- and anti-invasive factors, disrupting regulation of EVT invasion and spiral artery remodeling and thereby contribute to the etiology of several complications of pregnancy.


Assuntos
Angiopoietina-2/farmacologia , Movimento Celular/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Integrinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Gravidez , Complicações na Gravidez/enzimologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor TIE-2/agonistas , Receptor TIE-2/metabolismo , Trofoblastos/enzimologia
8.
Oncol Rep ; 45(2): 630-640, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416149

RESUMO

Endometrial cancer (EC) is the most common gynecological cancer, and one of the most important causes of cancer­related deaths in women worldwide. The long­term survival rate is lower in advanced­stage and recurrent EC, therefore it is important to identify new anticancer drugs. Garcinol, a polyisoprenylated benzophenone, is a promising anticancer drug for various cancer types but its effects on EC remain unclear. To investigate the anticancer effects of garcinol on EC, cell proliferation and cell cycle were assessed by real­time cell proliferation, cell counting, and colony formation assays, flow cytometric analysis, and 5­ethynyl­2'­deoxyuridine (EdU) incorporation assay, in EC Ishikawa (ISH) and HEC­1B cell lines. Western blotting was used to evaluate the expression of cell cycle­related protein cyclins, cyclin­dependent kinase and tumor suppression proteins. Garcinol inhibited ISH and HEC­1B cell proliferation in a dose­dependent manner, and induced ISH and HEC­1B cell cycle arrest at the G1 phase and G2/M phase, respectively, and decreased the S phase and DNA synthesis in these two cell lines. Following garcinol treatment the expression levels of p53 and p21 were increased, while the expression levels of CDK2, CDK4, cyclin D1 and cyclin B1 were gradually decreased in a dose­dependent manner in both ISH and HEC­1B cells. In addition, the expression levels of phosphorylated c­JUN N­terminal kinase (JNK) and p­c­JUN were significantly increased in both types of cells. Collectively, garcinol can induce EC cell cycle arrest and may be a promising candidate for EC chemotherapy.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Terpenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Endométrio/patologia , Feminino , Humanos , Terpenos/uso terapêutico
9.
Ann Transl Med ; 8(4): 84, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32175377

RESUMO

BACKGROUND: Memory T cells (Tms) are the major barrier preventing long-term allograft survival in presensitized transplant recipients. The OX40/OX40L pathway is important in the induction and maintenance of Tms. METHODS: In this study, we added anti-OX40L mAb to ethylene-carbodiimide-fixed donor splenocytes (ECDI-SPs)-a method which is effective in inducing allograft tolerance in non-presensitized mouse heart transplant model. Recipient mice received heart transplantation after 6 weeks of donor skin presensitization and were treated with anti-OX40L mAb, ECDI-SPs or anti-OX40L mAb + ECDI-SPs, respectively. RESULTS: Our data showed that the combination of ECDI-SPs and anti-OX40L mAb induced donor-specific tolerance in skin-presensitized heart transplant recipients, with the mechanism for this being associated with suppression of Tms and upregulation of CD4+CD25+Foxp3+ T regulatory cells (Tregs). Importantly, CD25+ T-cell depletion in the combined therapy-treated recipients broke the establishment of allograft tolerance, whereas adoptive transfer of presensitization-derived T cells into tolerant recipients suppressed Tregs expansion and abolished established tolerance. CONCLUSIONS: Blockade of OX40/OX40L pathway in combination with ECDI-SPs appears to modulate the Tms/Tregs imbalance so as to create a protective milieu and induce graft tolerance in presensitized recipients.

10.
Hum Reprod ; 35(1): 145-156, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886853

RESUMO

STUDY QUESTION: What is the expression level of T-cadherin in endometriosis, and does T-cadherin play a role in regulating invasion and migration of endometrial stromal cells? SUMMARY ANSWER: T-cadherin expression was reduced in ectopic endometriotic lesions compared to eutopic endometrium, and T-cadherin overexpression inhibited the invasion and migration of endometrial stromal cells. WHAT IS KNOWN ALREADY: Endometriosis is a disease that involves active cell invasion and migration. T-cadherin can inhibit cell invasion, migration and proliferation in various cancer cells, but its role in endometriosis has not been investigated. STUDY DESIGN, SIZE, DURATION: We explored the expression status of T-cadherin in 40 patients with and 24 without endometriosis. We also isolated endometrial stromal cells to study the invasion, migration and signaling pathway regulation of T-cadherin overexpression. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients were recruited at the Guangzhou Women and Children's Medical Center to study the expression levels of T-cadherin. The expression of T-cadherin was detected by immunohistochemistry staining and western blot. H-score was used to evaluate the staining intensity of T-cadherin. The correlation between T-cadherin expression levels (H-score) and endometriosis patients' age, stage, lesion size and adhesion was analyzed. Endometrial stromal cells from patients with and without endometriosis were isolated, and cell invasion and migration were detected by transwell assays after T-cadherin overexpression. The expression of vimentin in T-cadherin-overexpressed cells was detected by western blot. After T-cadherin overexpression, the phosphorylation profile of signaling pathway proteins was detected with the Proteome Profiler Human Phospho-Kinase Array Kit. MAIN RESULTS AND THE ROLE OF CHANCE: There was no difference in the expression of T-cadherin in the normal endometrium of control patients and the eutopic endometrium of endometriotic patients, but it was significantly decreased in the ectopic endometrium of endometriotic patients, compared with control endometrium and eutopic endometrium of endometriosis patients (P < 0.0001, for both). Western blot analysis also showed that the expression of T-cadherin was decreased in ectopic endometriotic lesions, but not the normal control endometrium or the endometriotic eutopic endometrium. The results of transwell assays indicated that T-cadherin overexpression inhibited the invasion and migration of endometrial stromal cells. In addition, T-cadherin overexpression promoted the phosphorylation of HSP27 (S78/S82) and JNK 1/2/3 (T183/Y185, T221/Y223) and decreased the expression of vimentin, MMP2 and MMP9 in eutopic endometriosis stromal cells. LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The control group were patients with benign gynecological conditions (e.g. uterus myoma, endometrial or cervical polyp), which may have genetic or epigenetic variations associated with T-cadherin expression and signaling pathways. The case numbers of involved endometriosis and control patients were limited. This study only used endometrial stromal cells from patients with or without endometriosis. Ideally, ectopic endometrial stromal cells of the ovarian endometriotic lesions should also be utilized to explore the function of T-cadherin. WIDER IMPLICATIONS OF THE FINDINGS: Further investigation of the role of T-cadherin in endometriosis may generate new potential therapeutic targets for this complex disorder. STUDY FUNDING AND COMPETING INTEREST(S): This study was supported by the Natural Science Foundation of Guangdong Province (2016A030313495), National Natural Science Foundation of China (81702567, 81671406, 31871412), the Science and Technology Programs of Guangdong (2017A050501021), Medical Science Technology Research Fund of Guangdong Province (A2018075), the Science and Technology Programs of Guangzhou City (201704030103), Internal Project of Family Planning Research Institute of Guangdong Province (S2018004), Post-doc initiation fund of Guangzhou (3302) and Post-doc science research initiation fund of Guangzhou Women and Children's Medical Center (20160322). There are no conflicts of interest.


Assuntos
Endometriose , Caderinas , China , Endométrio , Feminino , Humanos , Células Estromais
11.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31001418

RESUMO

Gestational trophoblastic disease or neoplasia covers a spectrum of benign and malignant conditions arising from pregnancies with highly abnormal development of trophoblastic tissue. In this brief review, we discuss the different features of these different conditions and their origins and risk factors and introduce some of the more novel and controversial treatment options currently being explored.


Assuntos
Doença Trofoblástica Gestacional , Mola Hidatiforme , Neoplasias Uterinas , Feminino , Doença Trofoblástica Gestacional/diagnóstico , Doença Trofoblástica Gestacional/patologia , Doença Trofoblástica Gestacional/terapia , Humanos , Mola Hidatiforme/diagnóstico , Mola Hidatiforme/patologia , Mola Hidatiforme/terapia , Gravidez , Fatores de Risco , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/patologia , Neoplasias Uterinas/terapia
12.
J Cell Biochem ; 119(5): 4170-4183, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315755

RESUMO

Better understanding of metastasis process would allow for the development of effective approaches to treat hepatocellular carcinoma (HCC). Recent literature has highlighted the fundamental role of interaction between tumor cells and their microenvironment components in tumor metastasis. Aberrant expression of epidermal growth factor (EGF) induces highly malignant HCC, and activated EGF/EGFR signaling is correlated with an aggressive phenotype and intrahepatic metastasis. Thus, EGF in the tumor microenvironment may influence the behavior of HCC cells. In this study, for the first time, we studied the expression of EGF in HCCs, and the potential role of EGF in the motility of HCC cells and the underlying mechanisms. It was demonstrated that EGF was highly expressed in HCCs and positively associated with higher tumor grade. In addition, EGF promoted the migration and invasion of HCC cells mainly via induction of fibronectin (FN) in vitro. Mechanistically, EGF simultaneously increased the nuclear translocation and PKC mediated phosphorylation of p65 which could bind to the -356 bp to -259 bp fragment of FN promoter, leading to a markedly increased activity of FN promoter in HCC cells. These results highlight the potential role of EGF in promoting HCC metastasis, demonstrate a novel pathway for regulation of FN expression and provide potential targets for HCC prevention and treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Movimento Celular , Fator de Crescimento Epidérmico/biossíntese , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fator de Crescimento Epidérmico/genética , Fibronectinas/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética
13.
Cancer Res Treat ; 50(3): 894-907, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28934847

RESUMO

PURPOSE: Cancer-associated fibroblasts (CAFs) activated by cancer cells has a central role in development and malignant biological behavior in colorectal cancer (CRC). Adult fibroblasts do not express Snail, but Snail-positive fibroblasts are discovered in the stroma of malignant CRC and reported to be the key role to chemoresistance. However, the reciprocal effect of CAFs expressed Snail to chemoresistance on CRC cells and the underlying molecular mechanisms are not fully characterized. MATERIALS AND METHODS: Snail-overexpressed 3T3 stable cell lines were generated by lipidosome and CT26 mixed with 3T3-Snail subcutaneous transplanted CRC models were established by subcutaneous injection. Cell Counting Kit-8, flow cytometry and western blotting assays were performed, and immunohistochemistry staining was studied. The cytokines participated in chemoresistance was validated with reverse transcriptase-polymerase chain reaction and heatmap. RESULTS: Snail-expression fibroblasts are discovered in human and mouse spontaneous CRCs. Overexpression of Snail induces 3T3 fibroblasts transdifferentiation to CAFs. CT26 co-cultured with 3T3-Snail resisted the impairment from 5-fluorouracil and paclitaxel in vitro. The subcutaneous transplanted tumor models included 3T3-Snail cells develop without restrictions even after treating with 5-fluorouracil or paclitaxel. Moreover, these chemoresistant processes may be mediated by CCL1 secreted by Snail-expression fibroblasts via transforming growth factor ß/nuclear factor-κB signaling pathways. CONCLUSION: Taken together, Snail-expressing 3T3 fibroblasts display CAFs properties that support 5-fluorouracil and paclitaxel chemoresistance in CRC via participation of CCL1 and suggest that inhibition of the Snail-expression fibroblasts in tumor may be a useful strategy to limit chemoresistance.


Assuntos
Fibroblastos Associados a Câncer/citologia , Quimiocina CCL1/metabolismo , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição da Família Snail/metabolismo , Células 3T3 , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL1/genética , Técnicas de Cocultura , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fluoruracila/farmacologia , Humanos , Camundongos , NF-kappa B/metabolismo , Transplante de Neoplasias , Paclitaxel/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
14.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2568-2582, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28844984

RESUMO

BACKGROUND: The interaction between hepatocellular carcinoma (HCC) cells and their microenvironment plays a fundamental role in tumor metastasis. The HCC microenvironment is rich in epidermal growth factor (EGF) and tumor necrosis factor α (TNFα), which may cooperatively, rather than individually, interact with tumor cells to influence their biological behavior. METHODS: Immunohistochemistry was performed to study the expression of EGF and TNFα in HCCs. Western blotting, immunofluorescence, qRT-PCR, wound healing scratch and invasion assay, and chromatin immunoprecipitation assays were used to study the combined roles of EGF and TNFα in the motility of HCC cells in vitro. RESULTS: We demonstrated that both EGF and TNFα were highly expressed in HCCs, and HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. In vitro, EGF and TNFα cooperatively promoted the motility of HCC cells mainly via synergistic induction of an extracellular matrix glycoprotein fibronectin (FN). Mechanistically, EGF and TNFα jointly increased the nuclear translocation and PKC mediated phosphorylation of NF-κB/p65 which could bind to the -356bp to -259bp fragment of the FN promoter, leading to a markedly increased activity of the FN promoter in HCC cells. CONCLUSIONS: HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. EGF and TNFα cooperatively promoted the motility of HCC cells mainly through NF-κB/p65 mediated synergistic induction of FN in vitro. GENERAL SIGNIFICANCE: These findings highlight the crosstalk between EGF and TNFα in promoting HCC, and provide potential targets for HCC prevention and treatment.


Assuntos
Carcinoma Hepatocelular/genética , Fator de Crescimento Epidérmico/genética , Fibronectinas/biossíntese , Neoplasias Hepáticas/genética , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , NF-kappa B/genética , Fosforilação
15.
Cancer Immunol Immunother ; 66(3): 355-366, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27915371

RESUMO

Myeloid-derived suppressor cells (MDSC) have been identified as a population of immature myeloid cells that suppress anti-tumor immunity. MDSC are increased in tumor-bearing hosts; thus, depletion of MDSC may enhance anti-tumor immunity. Histone deacetylase inhibitors (HDACi) are chemical agents that are primarily used against hematologic malignancies. The ability of these agents to modulate anticancer immunity has recently been extensively studied. However, the effect of HDACi on MDSC has remained largely unexplored. In the present study, we provide the first demonstration that HDACi treatment decreases MDSC accumulation in the spleen, blood and tumor bed but increases the proportion of T cells (particularly the frequency of IFN-γ- or perforin-producing CD8+ T cells) in BALB/C mice with 4T1 mammary tumors. In addition, HDACi exposure of bone marrow (BM) cells significantly eliminated the MDSC population induced by GM-CSF or the tumor burden in vitro, which was further demonstrated as functionally important to relieve the inhibitory effect of MDSC-enriched BM cells on T cell proliferation. Mechanistically, HDACi increased the apoptosis of Gr-1+ cells (almost MDSC) compared with that of Gr-1- cells, which was abrogated by the ROS scavenger N-acetylcysteine, suggesting that the HDACi-induced increase in MDSC apoptosis due to increased intracellular ROS might partially account for the observed depletion of MDSC. These findings suggest that the elimination of MDSC using an HDACi may contribute to the overall anti-tumor properties of these agents, highlighting a novel property of HDACi as potent MDSC-targeting agents, which may be used to enhance the efficacy of immunotherapeutic regimens.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia
16.
Transpl Int ; 30(3): 305-317, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27957767

RESUMO

Peritransplant infusion of ethylene carbodiimide-fixed donor splenocytes (ECDI-SPs) induces protection of islet and cardiac allografts. However, pro-inflammatory cytokine production during the peritransplantation period may negate the effect of ECDI-SPs. Therefore, we hypothesized that blocking pro-inflammatory cytokine secretion while increasing levels of anti-inflammatory cytokines would enhance the tolerance-induced efficacy of ECDI-SPs. The objective of this study was to determine the effectiveness of using ECDI-SPs combined with a short course of α1-antitrypsin (AAT) for induction of tolerance. Using a mice cardiac transplant model, we demonstrated that ECDI-SPs + AAT effectively induced indefinite mice cardiac allograft protection in a donor-specific fashion. This effect was accompanied by modulation of cytokines through decreasing levels of pro-inflammatory cytokines (including IFN-γ, TNF-α, IL-1ß, IL-6, IL-17, and IL-23) and increasing levels of anti-inflammatory cytokines (including IL-10, IL-13, and TGF-ß), and by inhibition of effector T cells (Teff) and expansion of regulatory T cells (Tregs). Therefore, we concluded that combined ECDI-SPs and AAT appeared to modulate the expression of cytokines and regulate the Teff:Treg balance to create a support milieu for graft protection. Our strategy of combining ECDI-SPs and AAT provides a promising approach for inducing donor-specific transplant tolerance.


Assuntos
Transplante de Coração/métodos , Baço/citologia , Baço/imunologia , alfa 1-Antitripsina/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Carbodi-Imidas , Transplante de Células/métodos , Citocinas/genética , Fixadores , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Transplante de Coração/efeitos adversos , Tolerância Imunológica , Imunidade Celular , Imunidade Humoral , Terapia de Imunossupressão/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doadores de Tecidos , Transplante Homólogo
17.
Sci Rep ; 6: 33440, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27678333

RESUMO

Fusobacterium nucleatum (F. nucleatum, Fn) is associated with the colorectal cancer (CRC). Fn-infection could induce significant levels of serum Fn-specific antibodies in human and mice. The objective of this study was to identify Fn-infection that elicit a humoral response in patients with CRC and evaluate the diagnostic performance of serum anti-Fn antibodies. In this work, we showed the mean absorbance value of anti-Fn-IgA and -IgG in the CRC group were significantly higher than those in the benign colon disease group and healthy control group (P < 0.001). The sensitivity and specificity of ELISA for the detection of anti-Fn-IgA were 36.43% and 92.71% based on the optimal cut-off. The combination of anti-Fn-IgA and carcino-embryonic antigen (CEA) was better for diagnosing CRC (Sen: 53.10%, Spe: 96.41%; AUC = 0.848). Furthermore, combining anti-Fn-IgA with CEA and carbohydrate antigen 19-9 (CA19-9) (Sen: 40.00%, Spe: 94.22%; AUC = 0.743) had the better ability to classify CRC patients with stages I-II. These results suggested that Fn-infection elicited high level of serum anti-Fn antibodies in CRC patients, and serum anti-Fn-IgA level may be a potential diagnosing biomarker for CRC. Serum anti-Fn-IgA in combination with CEA and CA19-9 increases the sensitivity of detecting early CRC.

18.
Am J Reprod Immunol ; 75(3): 298-309, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26750089

RESUMO

Macrophages perform many specific functions including host defense, homeostasis, angiogenesis, and tissue development. Macrophages are the second most abundant leukocyte population in the non-pregnant endometrium and pregnant decidua and likely play a central role in the establishment and maintenance of normal pregnancy. Importantly, aberrantly activated uterine macrophages can affect trophoblast function and placental development, which may result in various adverse pregnancy outcomes ranging from pre-eclampsia to fetal growth restriction or demise. Only by fully understanding the roles of macrophage in pregnancy will we be able to develop interventions for the treatment of these various pregnancy complications. This review discusses the general origin and classification of monocytes and macrophages and focuses on the phenotype and functional roles of decidual macrophage at the maternal-fetal interface in normal pregnancy, as well as discussing the potential contribution of the abnormal state of these cells to various aspects of pregnancy pathologies.


Assuntos
Decídua/imunologia , Retardo do Crescimento Fetal/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Animais , Decídua/patologia , Feminino , Retardo do Crescimento Fetal/patologia , Humanos , Macrófagos/classificação , Monócitos/classificação , Monócitos/imunologia , Monócitos/patologia , Gravidez
19.
Am J Cancer Res ; 5(6): 2098-112, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26269769

RESUMO

Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey.

20.
Lasers Med Sci ; 30(7): 1941-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26210547

RESUMO

Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). This study aimed to investigate the efficacy and potential mechanism of HMME-PDT under irradiation of green light-emitting diode (LED) with wavelength of 530 ± 20 nm in treating human tongue squamous cell carcinoma Tca8113 cells in vitro. The HMME concentrations were 1.25, 2.5, and 5 µg/ml while the energy densities were 0.6, 1.2, 1.8, 2.4, and 3.0 J/cm(2). MTT assay demonstrated that HMME-PDT significantly inhibited the proliferation of Tca8113 cells, and the cytotoxicity was improved with increased HMME concentration and light intensity. The amount of cells decreased significantly and the morphology of cells changed drastically after HMME-PDT. Flow cytometry analysis revealed that HMME-PDT induced both apoptosis and necrosis, but apoptosis was the main form of cell death. Apoptotic morphology was confirmed by Hoechst 33342 staining. Laser scanning confocal microscopy observation showed that HMME was mainly localized in mitochondria. The production of intracellular reactive oxygen species increased remarkably after PDT treatment, and both sodium azide (the singlet oxygen quencher) and D-mannitol (the hydroxyl radical scavenger) could protect Tca8113 cells from death induced by HMME-PDT. Additionally, the activity of caspase-3 also increased markedly in treated groups, and the cell death could be rescued by a reversible inhibitor (Ac-DEVD-CHO) of caspase-3. These results demonstrated that HMME combined with green LED significantly induced apoptosis of Tca8113 cells, suggesting that HMME-PDT using green LED might be a potential therapeutic strategy for human tongue squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Hematoporfirinas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Língua/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Hematoporfirinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA