Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 121: 395-403, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35065275

RESUMO

An 8-week feeding trial was performed to evaluate the effects of dietary leucine (Leu) and valine (Val) levels on growth performance, glycolipid metabolism and immune response in Oreochromis niloticus. Fish (15.23 ± 0.05 g) were randomly fed four diets containing two Leu levels (1.2% and 2.3%) and two Val levels (0.7% and 1.4%) as a 2 × 2 experimental design (LL-LV, LL-HV, HL-LV and HL-HV). Compared with LL-LV group, the growth parameters (final weight, daily growth coefficient (DGC) and growth rate per metabolic body weight (GRMBW)), feed conversion rate (FCR), the activities of intestinal amylase, lipase, creatine kinase (CK) and Na+, K+-ATPase, liver NAD+/NADH ratio, as well as the expression of SIRT1, GK, PK, FBPase, PPARα, CPT IA, ACO and IL10 all increased significantly in the HL-LV group; however, in the high Val group, final weight, DGC, GRMBW, intestinal enzyme activities, as well as the expression of PEPCK, SREBP1, FAS, IL8 and IL10 of the HL-HV group were significantly lower than those of the LL-HV group, while the opposite was true for the remaining indicators. Significant interactions between dietary Leu and Val were observed in final weight, DGC, GRMBW, plasma IL1ß and IL6 levels, intestinal amylase and CK activities, liver NAD+/NADH ratio, as well as the expression of SIRT1, PK, PEPCK, FBPase, SREBP1, FAS, PPARα, CPT IA, ACO, NF-κB1, IL1ß, IL6 and IL10. The highest values of growth parameters, intestinal enzyme activities and expression of SIRT1, FBPase, PPARα, CPT IA and ACO were observed in the HL-LV group, while the opposite was true for the expression of SREBP1, FAS, PPARα, NF-κB1, IL1ß and IL6. Overall, our findings indicated that dietary Leu and Val can effect interactively, and fish fed with diets containing 2.3% Leu with 0.7% Val had the best growth performance and hepatic health status of O. niloticus.


Assuntos
Ração Animal , Glicolipídeos/metabolismo , Leucina/administração & dosagem , Tilápia , Valina/administração & dosagem , Amilases , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Imunidade , Interleucina-10 , Interleucina-6 , NAD , PPAR alfa/genética , Sirtuína 1 , Tilápia/crescimento & desenvolvimento , Tilápia/imunologia
2.
Chin Med J (Engl) ; 134(24): 2922-2930, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855639

RESUMO

ABSTRACT: Colorectal cancer (CRC) is one of the most prevalent, most lethal cancers in the world. Increasing evidence suggests that the intestinal microbiota is closely related to the pathogenesis and prognosis of CRC. The normal microbiota plays an essential role in maintaining gut barrier function and the immune microenvironment. Recent studies have identified carcinogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus (S. gallolyticus), as well as protective bacterial such as Akkermansia muciniphila (A. muciniphila), as potential targets of CRC treatment. Gut microbiota modulation aims to restore gut dysbiosis, regulate the intestinal immune system and prevent from pathogen invasion, all of which are beneficial for CRC prevention and prognosis. The utility of probiotics, prebiotics, postbiotics, fecal microbiota transplantation and dietary inventions to treat CRC makes them novel microbe-based management tools. In this review, we describe the mechanisms involved in bacteria-derived colorectal carcinogenesis and summarized novel bacteria-related therapies for CRC. In summary, we hope to facilitate clinical applications of intestinal bacteria for preventing and treating CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Neoplasias Colorretais/terapia , Disbiose , Transplante de Microbiota Fecal , Humanos , Prebióticos , Microambiente Tumoral
3.
J Nutr ; 150(9): 2322-2335, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32720689

RESUMO

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid ß-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. METHODS: Carnitine-depleted male Nile tilapia (initial weight: 4.29 ± 0.12 g; 3 mo old) were established by feeding them with mildronate diets (1000 mg/kg/d) for 6 wk. Zebrafish deficient in the carnitine palmitoyltransferase 1b gene (cpt1b) were produced by using CRISPR/Cas9 gene-editing technology, and their males (154 ± 3.52 mg; 3 mo old) were used for experiments. Normal Nile tilapia and wildtype zebrafish were used as controls. We assessed nutrient metabolism and energy homeostasis-related biochemical and molecular parameters, and performed 14C-labeled nutrient tracking and transcriptomic analyses. RESULTS: The mitochondrial FAO decreased by 33.1-88.9% (liver) and 55.6-68.8% (muscle) in carnitine-depleted Nile tilapia and cpt1b-deficient zebrafish compared with their controls (P < 0.05). Notably, glucose oxidation and muscle protein deposition increased by 20.5-24.4% and 6.40-8.54%, respectively, in the 2 fish models compared with their corresponding controls (P < 0.05). Accordingly, the adenosine 5'-monophosphate-activated protein kinase/protein kinase B-mechanistic target of rapamycin (AMPK/AKT-mTOR) signaling was significantly activated in the 2 fish models with inhibited mitochondrial FAO (P < 0.05). CONCLUSIONS: These data show that inhibited mitochondrial FAO in fish induces energy homeostasis remodeling and enhances glucose utilization and protein deposition. Therefore, fish with inhibited mitochondrial FAO could have high potential to utilize carbohydrate. Our results demonstrate a potentially new approach for increasing protein deposition through energy homeostasis regulation in cultured animals.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Metilidrazinas/farmacologia , Mitocôndrias/metabolismo , Proteínas/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Ciclídeos , Citocromos b/genética , Citocromos b/metabolismo , DNA , Metabolismo Energético , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Homeostase , Insulina , Masculino , Mutação , Oxirredução , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA