Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Virol ; 97(11): e0095323, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877721

RESUMO

IMPORTANCE: To our knowledge, this is the first report delineating the activation of the master antioxidant defense during EBV latency. We show that EBV-triggered reactive oxygen species production activates the Keap1-NRF2 pathway in EBV-transformed cells, and LMP1 plays a major role in this event, and the stress-related kinase TBK1 is required for NRF2 activation. Moreover, we show that the Keap1-NRF2 pathway is important for cell proliferation and EBV latency maintenance. Our findings disclose how EBV controls the balance between oxidative stress and antioxidant defense, which greatly improve our understanding of EBV latency and pathogenesis and may be leveraged to opportunities toward the improvement of therapeutic outcomes in EBV-associated diseases.


Assuntos
Antioxidantes , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Infecção Latente , Latência Viral , Humanos , Antioxidantes/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 4/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Infecção Latente/metabolismo , Infecção Latente/virologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células
2.
J Med Virol ; 95(7): e28952, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37455550

RESUMO

The presence of hepatitis B virus (HBV) covalently closed circular (ccc) DNA (cccDNA), which serves as a template for viral replication and integration of HBV DNA into the host cell genome, sustains liver pathogenesis and constitutes an intractable barrier to the eradication of chronic HBV infection. The current antiviral therapy for HBV infection, using nucleos(t)ide analogues (NAs), can suppress HBV replication but cannot eliminate integrated HBV DNA and episomal cccDNA. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 is a powerful genetic tool that can edit integrated HBV DNA and minichromosomal cccDNA for gene therapy, but its expression and delivery require a viral vector, which poses safety concerns for therapeutic applications in humans. In the present study, we used synthetic guide RNA (gRNA)/Cas9-ribonucleoprotein (RNP) as a nonviral formulation to develop a novel CRISPR/Cas9-mediated gene therapy for eradicating HBV infection. We designed a series of gRNAs targeting multiple specific HBV genes and tested their antiviral efficacy and cytotoxicity in different HBV cellular models. Transfection of stably HBV-infected human hepatoma cell line HepG2.2.15 with HBV-specific gRNA/Cas9 RNPs resulted in a substantial reduction in HBV transcripts. Specifically, gRNA5 and/or gRNA9 RNPs significantly reduced HBV cccDNA, total HBV DNA, pregenomic RNA, and HBV antigen (HBsAg, HBeAg) levels. T7 endonuclease 1 (T7E1) cleavage assay and DNA sequencing confirmed specific HBV gene cleavage and mutations at or around the gRNA target sites. Notably, this gene-editing system did not alter cellular viability or proliferation in the treated cells. Because of their rapid DNA cleavage capability, low off-target effects, low risk of insertional mutagenesis, and readiness for use in clinical application, these results suggest that synthetic gRNA/Cas9 RNP-based gene-editing can be utilized as a promising therapeutic drug for eradicating chronic HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , DNA Viral/genética , DNA Viral/metabolismo , Sistemas CRISPR-Cas , Vírus da Hepatite B/genética , Replicação Viral , RNA/metabolismo , RNA/farmacologia , DNA Circular/genética
3.
Front Oncol ; 12: 923009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814476

RESUMO

Liver hepatocellular carcinoma (LIHC) is the major form of liver cancer that is the fourth most common cause of cancer death worldwide. It has been reported that the multifunctional protein p62 (also known as SQSTM1) plays a cancer-promoting role in LIHC, but the detailed mechanisms underlying p62 interaction with LIHC remains unclear. To gain a comprehensive understanding of p62 interaction with LIHC in clinical settings, we performed bioinformatic analyses using various online algorithms derived from high throughput profiling. Our results indicate that p62 expression is significantly upregulated, partially due to its promoter demethylation, rather than p62 gene mutation, in LIHC. Mutation of TP53, CTNNB1, or ALB significantly correlates with, and mutation of AXIN1 reversely correlates with, the p62 expression level. Its upregulation occurs as early as liver cirrhosis, and go through all stages of the carcinogenesis. HCV infection makes a significant contribution to p62 upregulation in LIHC. We further identified p62-associated molecular signatures in LIHC, including many genes that are involved in antioxidant stress and metabolism, such as SRX1 and TXNRD1. Regarding to the clinical outcome, p62 expression level reversely correlates with the survival of LIHC patients (p<0.01). Importantly, we experimentally validated that p62 depletion in liver cancer cell lines downregulates the expression of SRX1 and TXNRD1 at both transcriptional and translational levels, and reduces cell proliferation. As the potential mechanisms underlying the tumor-promoting role of p62, we show that p62 upregulation is remarkably associated with reprogramming of pathways mediated by p53, Wnt/ß-catenin, and Keap1-NRF2, which are crucial for oncogenesis in many contexts. Our findings provide a comprehensive insight into the interaction between p62 and LIHC, offering valuable information for understanding of LIHC pathogenesis.

4.
Aging Cell ; 20(12): e13513, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34752684

RESUMO

Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress-mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells-the major effectors of host adaptive immunity against infection and malignancy-is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1 O2 ) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1 O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1 O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X-ray repair cross-complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1 O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging-associated diseases.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Linfócitos T/metabolismo , Telômero/metabolismo , Humanos
5.
Cancers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771613

RESUMO

The Epstein-Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.

7.
mBio ; 12(5): e0109721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488443

RESUMO

The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.


Assuntos
Regulação da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , NF-kappa B/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteínas da Matriz Viral/genética , Apoptose , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Viral/genética , Humanos , Proteína Sequestossoma-1/genética , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo , Latência Viral
8.
Hepatology ; 74(5): 2380-2394, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34110660

RESUMO

BACKGROUND AND AIMS: Hepatitis C virus (HCV) leads to a high rate of chronic infection and T cell dysfunction. Although it is well known that chronic antigenic stimulation is a driving force for impaired T cell functions, the precise mechanisms underlying immune activation-induced T cell dysfunctions during HCV infection remain elusive. APPROACH AND RESULTS: Here, we demonstrated that circulating CD4+ T cells from patients who are chronically HCV-infected exhibit an immune activation status, as evidenced by the overexpression of cell activation markers human leukocyte antigen-antigen D-related, glucose transporter 1, granzyme B, and the short-lived effector marker CD127- killer cell lectin-like receptor G1+ . In contrast, the expression of stem cell-like transcription factor T cell factor 1 and telomeric repeat-binding factor 2 (TRF2) are significantly reduced in CD4+ T cells from patients who are chronically HCV-infected compared with healthy participants (HP). Mechanistic studies revealed that CD4+ T cells from participants with HCV exhibit phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling hyperactivation on T cell receptor stimulation, promoting proinflammatory effector cell differentiation, telomeric DNA damage, and cellular apoptosis. Inhibition of Akt signaling during T cell activation preserved the precursor memory cell population and prevented inflammatory effector cell expansion, DNA damage, and apoptotic death. Moreover, knockdown of TRF2 reduced HP T cell stemness and triggered telomeric DNA damage and cellular apoptosis, whereas overexpression of TRF2 in CD4 T cells prevented telomeric DNA damage. CONCLUSIONS: These results suggest that modulation of immune activation through inhibiting Akt signaling and protecting telomeres through enhancing TRF2 expression may open therapeutic strategies to fine tune the adaptive immune responses in the setting of persistent immune activation and inflammation during chronic HCV infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Dano ao DNA/imunologia , Hepacivirus/genética , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Telômero/genética , Adulto , Idoso , Apoptose/genética , Apoptose/imunologia , Células Cultivadas , Dano ao DNA/genética , Feminino , Técnicas de Silenciamento de Genes/métodos , Hepatite C Crônica/virologia , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Infecção Persistente/genética , Infecção Persistente/imunologia , Infecção Persistente/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Viral/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transdução Genética/métodos , Adulto Jovem
9.
J Immunol ; 206(9): 2052-2060, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820854

RESUMO

RUNX1 overlapping RNA (RUNXOR) is a long noncoding RNA and a key regulator of myeloid-derived suppressor cells (MDSCs) via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported MDSC expansion and inhibition of host immune responses during viral infections; however, the mechanisms regulating MDSC differentiation and suppressive functions, especially the role of RUNXOR-RUNX1 in the regulation of MDSCs in people living with HIV (PLHIV), remain unknown. In this study, we demonstrate that RUNXOR and RUNX1 expressions are upregulated in MDSCs that expand and accumulate in human PBMCs derived from PLHIV. We found that the upregulation of RUNXOR and RUNX1 is associated with the expressions of several key immunosuppressive molecules, including arginase 1, inducible NO synthase, STAT3, IL-6, and reactive oxygen species. RUNXOR and RUNX1 could positively regulate each other's expression and control the expressions of these suppressive mediators. Specifically, silencing RUNXOR or RUNX1 expression in MDSCs from PLHIV attenuated MDSC expansion and immunosuppressive mediator expressions, whereas overexpressing RUNXOR in CD33+ myeloid precursors from healthy subjects promoted their differentiation into MDSCs and enhanced the expression of these mediators. Moreover, loss of RUNXOR-RUNX1 function in MDSCs improved IFN-γ production from cocultured autologous CD4 T cells derived from PLHIV. These results suggest that the RUNXOR-RUNX1 axis promotes the differentiation and suppressive functions of MDSCs via regulating multiple immunosuppressive signaling molecules and may represent a potential target for immunotherapy in conjunction with antiviral therapy in PLHIV.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Infecções por HIV/genética , Células Supressoras Mieloides/metabolismo , RNA Longo não Codificante/genética , Arginase/genética , Arginase/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Células Supressoras Mieloides/citologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Regulação para Cima
10.
Front Oncol ; 11: 632638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869018

RESUMO

Non-small-cell lung carcinoma (NSCLC) is the major type of lung cancer, which is among the leading causes of cancer-related deaths worldwide. LIMD1 was previously identified as a tumor suppressor in lung cancer, but their detailed interaction in this setting remains unclear. In this study, we have carried out multiple genome-wide bioinformatic analyses for a comprehensive understanding of LIMD1 in NSCLC, using various online algorithm platforms that have been built for mega databases derived from both clinical and cell line samples. Our results indicate that LIMD1 expression level is significantly downregulated at both mRNA and protein levels in both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), with a considerable contribution from its promoter methylation rather than its gene mutations. The Limd1 gene undergoes mutation only at a low rate in NSCLC (0.712%). We have further identified LIMD1-associated molecular signatures in NSCLC, including its natural antisense long non-coding RNA LIMD1-AS1 and a pool of membrane trafficking regulators. We have also identified a subgroup of tumor-infiltrating lymphocytes, especially neutrophils, whose tumor infiltration levels significantly correlate with LIMD1 level in both LUAD and LUSC. However, a significant correlation of LIMD1 with a subset of immune regulatory molecules, such as IL6R and TAP1, was only found in LUAD. Regarding the clinical outcomes, LIMD1 expression level only significantly correlates with the survival of LUAD (p<0.01) but not with that of LUSC (p>0.1) patients. These findings indicate that LIMD1 plays a survival role in LUAD patients at least by acting as an immune regulatory protein. To further understand the mechanisms underlying the tumor-suppressing function of LIMD1 in NSCLC, we show that LIMD1 downregulation remarkably correlates with the deregulation of multiple pathways that play decisive roles in the oncogenesis of NSCLC, especially those mediated by EGFR, KRAS, PIK3CA, Keap1, and p63, in both LUAD and LUSC, and those mediated by p53 and CDKN2A only in LUAD. This study has disclosed that LIMD1 can serve as a survival prognostic marker for LUAD patients and provides mechanistic insights into the interaction of LIMD1 with NSCLC, which provide valuable information for clinical applications.

11.
Front Immunol ; 12: 601298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776993

RESUMO

T cells are critical for the control of viral infections and T cell responses are regulated by a dynamic network of non-coding RNAs, including microRNAs (miR) and long non-coding RNAs (lncRNA). Here we show that an activation-induced decline of lncRNA growth arrest-specific transcript 5 (GAS5) activates DNA damage response (DDR), and regulates cellular functions and apoptosis in CD4 T cells derived from people living with HIV (PLHIV) via upregulation of miR-21. Notably, GAS5-miR21-mediated DDR and T cell dysfunction are observed in PLHIV on antiretroviral therapy (ART), who often exhibit immune activation due to low-grade inflammation despite robust virologic control. We found that GAS5 negatively regulates miR-21 expression, which in turn controls critical signaling pathways involved in DNA damage and cellular response. The sustained stimulation of T cells decreased GAS5, increased miR-21 and, as a result, caused dysfunction and apoptosis in CD4 T cells. Importantly, this inflammation-driven T cell over-activation and aberrant apoptosis in ART-controlled PLHIV and healthy subjects (HS) could be reversed by antagonizing the GAS5-miR-21 axis. Also, mutation of the miR-21 binding site on exon 4 of GAS5 gene to generate a GAS5 mutant abolished its ability to regulate miR-21 expression as well as T cell activation and apoptosis markers compared to the wild-type GAS5 transcript. Our data suggest that GAS5 regulates TCR-mediated activation and apoptosis in CD4 T cells during HIV infection through miR-21-mediated signaling. However, GAS5 effects on T cell exhaustion during HIV infection may be mediated by a mechanism beyond the GAS5-miR-21-mediated signaling. These results indicate that targeting the GAS5-miR-21 axis may improve activity and longevity of CD4 T cells in ART-treated PLHIV. This approach may also be useful for targeting other infectious or inflammatory diseases associated with T cell over-activation, exhaustion, and premature immune aging.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , MicroRNAs/imunologia , RNA Longo não Codificante/imunologia , Transdução de Sinais/imunologia , Adulto , Apoptose/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Viruses ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670221

RESUMO

The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.


Assuntos
Carcinogênese/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Viroses/imunologia , Autofagia/imunologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Ubiquitinação/fisiologia
13.
Cells ; 9(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353065

RESUMO

RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA and plays a pivotal role in the differentiation of myeloid cells via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported that myeloid-derived suppressor cells (MDSCs) expand and inhibit host immune responses during chronic viral infections; however, the mechanisms responsible for MDSC differentiation and suppressive functions, in particular the role of RUNXOR-RUNX1, remain unclear. Here, we demonstrated that RUNXOR and RUNX1 expressions are significantly upregulated and associated with elevated levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS) in MDSCs during chronic hepatitis C virus (HCV) infection. Mechanistically, we discovered that HCV-associated exosomes (HCV-Exo) can induce the expressions of RUNXOR and RUNX1, which in turn regulates miR-124 expression via STAT3 signaling, thereby promoting MDSC differentiation and suppressive functions. Importantly, overexpression of RUNXOR in healthy CD33+ myeloid cells promoted differentiation and suppressive functions of MDSCs. Conversely, silencing RUNXOR or RUNX1 expression in HCV-derived CD33+ myeloid cells significantly inhibited their differentiation and expressions of suppressive molecules and improved the function of co-cultured autologous CD4 T cells. Taken together, these results indicate that the RUNXOR-RUNX1-STAT3-miR124 axis enhances the differentiation and suppressive functions of MDSCs and could be a potential target for immunomodulation in conjunction with antiviral therapy during chronic HCV infection.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Exossomos/virologia , Hepacivirus , MicroRNAs/metabolismo , Células Supressoras Mieloides/citologia , RNA Longo não Codificante , Fator de Transcrição STAT3/metabolismo , Adulto , Idoso , Arginase/metabolismo , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Proliferação de Células , Feminino , Regulação Viral da Expressão Gênica , Genótipo , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Humanos , Imunossupressores , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Regulação para Cima , Carga Viral
14.
Cell Death Dis ; 11(12): 1030, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268822

RESUMO

Telomere erosion and mitochondrial dysfunction are prominent features of aging cells with progressive declines of cellular functions. Whether telomere injury induces mitochondrial dysfunction in human T lymphocytes, the major component of adaptive host immunity against infection and malignancy, remains unclear. We have recently shown that disruption of telomere integrity by KML001, a telomere-targeting drug, induces T cell senescence and apoptosis via the telomeric DNA damage response (DDR). In this study, we used KML001 to further investigate the role and mechanism of telomere injury in mitochondrial dysregulation in aging T cells. We demonstrate that targeting telomeres by KML001 induces mitochondrial dysfunction, as evidenced by increased mitochondrial swelling and decreased mitochondrial membrane potential, oxidative phosphorylation, mitochondrial DNA content, mitochondrial respiration, oxygen consumption, glycolysis, and ATP energy production. Mechanistically, we found that the KML001-induced telomeric DDR activated p53 signaling, which in turn repressed the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1), leading to T cell mitochondrial dysfunction. These results, forging a direct link between telomeric and mitochondrial biology, shed new light on the human T cell aging network, and demonstrate that the p53-PGC-1α-NRF-1 axis contributes to mitochondrial dysfunction in the setting of telomeric DDR. This study suggests that targeting this axis may offer an alternative, novel approach to prevent telomere damage-mediated mitochondrial and T cell dysfunctions to combat a wide range of immune aging-associated human diseases.


Assuntos
Arsenitos/toxicidade , Linfócitos T CD4-Positivos/patologia , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Compostos de Sódio/toxicidade , Telômero/patologia , Proteína Supressora de Tumor p53/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Regulação para Baixo/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Transdução de Sinais/efeitos dos fármacos , Telômero/efeitos dos fármacos , Regulação para Cima/genética
15.
Front Immunol ; 11: 626431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643305

RESUMO

CD4 T cell death or survival following initial HIV infection is crucial for the development of viral reservoirs and latent infection, making its evaluation critical in devising strategies for HIV cure. Here we infected primary CD4 T cells with a wild-type HIV-1 and investigated the death and survival mechanisms in productively infected and bystander cells during early HIV infection. We found that HIV-infected cells exhibited increased programmed cell death, such as apoptosis, pyroptosis, and ferroptosis, than uninfected cells. However, productively infected (p24+) cells and bystander (p24-) cells displayed different patterns of cell death due to differential expression of pro-/anti-apoptotic proteins and signaling molecules. Cell death was triggered by an aberrant DNA damage response (DDR), as evidenced by increases in γH2AX levels, which inversely correlated with telomere length and telomerase levels during HIV infection. Mechanistically, HIV-infected cells exhibited a gradual shortening of telomeres following infection. Notably, p24+ cells had longer telomeres compared to p24- cells, and telomere length positively correlated with the telomerase, pAKT, and pATM expressions in HIV-infected CD4 T cells. Importantly, blockade of viral entry attenuated the HIV-induced inhibition of telomerase, pAKT, and pATM as well as the associated telomere erosion and cell death. Moreover, ATM inhibition promoted survival of HIV-infected CD4 T cells, especially p24+ cells, and rescued telomerase and AKT activities by inhibiting cell activation, HIV infection, and DDR. These results indicate that productively infected and bystander CD4 T cells employ different mechanisms for their survival and death, suggesting a possible pro-survival, pro-reservoir mechanism during early HIV infection.


Assuntos
Efeito Espectador/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Morte Celular Regulada/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Sobrevivência Celular/imunologia , Dano ao DNA/imunologia , Feminino , Células HEK293 , Proteína do Núcleo p24 do HIV/imunologia , Infecções por HIV/patologia , Histonas/imunologia , Humanos , Masculino , Proteínas Proto-Oncogênicas c-akt/imunologia , Telômero/imunologia
16.
PLoS Pathog ; 15(4): e1007541, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31017975

RESUMO

DNA damage response (DDR) and selective autophagy both can be activated by reactive oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key role in their crosstalk. ROS production has been well documented in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autophagy and its interplay with DDR have not been investigated in these settings. In this study, we provide evidence that considerable levels of p62-mediated selective autophagy are spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition, which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor offsets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accumulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated CHK1 and RAD51 protein instability. This claim is further supported by the findings that transient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs) had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitutive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-transformed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy that governs DDR in the setting of oncogenic virus latent infection, and provide a novel insight into virus-mediated oncogenesis.


Assuntos
Autofagia , Transformação Celular Viral , Dano ao DNA , Infecções por Vírus Epstein-Barr/patologia , Estresse Oxidativo , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linfoma de Burkitt/virologia , Cromatina , Reparo do DNA , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Ubiquitina/metabolismo , Latência Viral
17.
Curr Cancer Drug Targets ; 19(6): 468-478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30332964

RESUMO

The multifunctional signaling hub p62 is well recognized as a ubiquitin sensor and a selective autophagy receptor. As a ubiquitin sensor, p62 promotes NFκB activation by facilitating TRAF6 ubiquitination and aggregation. As a selective autophagy receptor, p62 sorts ubiquitinated substrates including p62 itself for lysosome-mediated degradation. p62 plays crucial roles in myriad cellular processes including DNA damage response, aging/senescence, infection and immunity, chronic inflammation, and cancerogenesis, dependent on or independent of autophagy. Targeting p62-mediated autophagy may represent a promising strategy for clinical interventions of different cancers. In this review, we summarize the transcriptional and post-translational regulation of p62, and its mechanistic roles in cancers, with the emphasis on its roles in regulation of DNA damage response and its connection to the cGAS-STING-mediated antitumor immune response, which is promising for cancer vaccine design.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Proteínas de Ligação a RNA/metabolismo , Autofagia/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteólise , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Ubiquitinação
18.
Cell Death Dis ; 9(9): 900, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185784

RESUMO

T cells play a crucial role in viral clearance and vaccine responses; however, the mechanisms that regulate their homeostasis during viral infections remain unclear. In this study, we investigated the machineries of T-cell homeostasis and telomeric DNA damage using a human model of hepatitis C virus (HCV) infection. We found that naïve CD4 T cells in chronically HCV-infected patients (HCV T cells) were significantly reduced due to apoptosis compared with age-matched healthy subjects (HSs). These HCV T cells were not only senescent, as demonstrated by overexpression of aging markers and particularly shortened telomeres; but also DNA damaged, as evidenced by increased dysfunctional telomere-induced foci (TIF). Mechanistically, the telomere shelterin protein, in particular telomeric repeat binding factor 2 (TRF2) that functions to protect telomeres from DNA damage, was significantly inhibited posttranscriptionally via the p53-dependent Siah-1a ubiquitination. Importantly, knockdown of TRF2 in healthy T cells resulted in increases in telomeric DNA damage and T-cell apoptosis, whereas overexpression of TRF2 in HCV T cells alleviated telomeric DNA damage and T-cell apoptosis. To the best of our knowledge, this is the first report revealing that inhibition of TRF2 promotes T-cell telomere attrition and telomeric DNA damage that accelerates T-cell senescent and apoptotic programs, which contribute to naïve T-cell loss during viral infection. Thus, restoring the impaired T-cell telomeric shelterin machinery may offer a new strategy to improve immunotherapy and vaccine response against human viral diseases.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Dano ao DNA/fisiologia , Hepatite C/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Apoptose/fisiologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Proteínas Supressoras de Tumor/metabolismo
19.
Oncotarget ; 9(5): 6282-6297, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464072

RESUMO

LIMD1 (LIM domain-containing protein 1) is considered as a tumor suppressor, being deregulated in many cancers to include hematological malignancies; however, very little is known about the underlying mechanisms of its deregulation and its roles in carcinogenesis. Epstein-Barr Virus (EBV) is associated with a panel of malignancies of lymphocytic and epithelial origin. Using high throughput expression profiling, we have previously identified LIMD1 as a common marker associated with the oncogenic transcription factor IRF4 in EBV-related lymphomas and other hematological malignancies. In this study, we have identified potential conserved IRF4- and NFκB-binding motifs in the LIMD1 gene promoter, and both are demonstrated functional by promoter-reporter assays. We further show that LIMD1 is partially upregulated by EBV latent membrane protein 1 (LMP1) via IRF4 and NFκB in EBV latency. As to its role in the setting of EBV latent infection, we show that LIMD1 interacts with TRAF6, a crucial mediator of LMP1 signal transduction. Importantly, LIMD1 depletion impairs LMP1 signaling and functions, potentiates ionomycin-induced DNA damage and apoptosis, and inhibits p62-mediated selective autophagy. Taken together, these results show that LIMD1 is upregulated in EBV latency and plays an oncogenic role rather than that of a tumor suppressor. Our findings have identified LIMD1 as a novel player in EBV latency and oncogenesis, and open a novel research avenue, in which LIMD1 and p62 play crucial roles in linking DNA damage response (DDR), apoptosis, and autophagy and their potential interplay during viral oncogenesis.

20.
Oncotarget ; 8(31): 50594-50607, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881586

RESUMO

Gene fusion is one of the hallmarks of cancer. Recent advances in RNA-seq of cancer transcriptomes have facilitated the discovery of fusion transcripts. In this study, we report identification of a surprisingly large number of fusion transcripts, including six KANSARL (KANSL1-ARL17A) transcripts that resulted from the fusion between the KANSL1 and ARL17A genes using a RNA splicingcode model. Five of these six KANSARL fusion transcripts are novel. By systematic analysis of RNA-seq data of glioblastoma, prostate cancer, lung cancer, breast cancer, and lymphoma from different regions of the World, we have found that KANSARL fusion transcripts were rarely detected in the tumors of individuals from Asia or Africa. In contrast, they exist in 30 - 52% of the tumors from North Americans cancer patients. Analysis of CEPH/Utah Pedigree 1463 has revealed that KANSARL is a familially-inherited fusion gene. Further analysis of RNA-seq datasets of the 1000 Genome Project has indicated that KANSARL fusion gene is specific to 28.9% of the population of European ancestry origin. In summary, we demonstrated that KANSARL is the first cancer predisposition fusion gene associated with genetic backgrounds of European ancestry origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA