Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961641

RESUMO

Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer, but its genomic consequences have been difficult to study using short-read technologies. To resolve the dysregulation associated with HPV integration, we performed long-read sequencing on 63 cervical cancer genomes. We identified six categories of integration events based on HPV-human genomic structures. Of all HPV integrants, defined as two HPV-human breakpoints bridged by an HPV sequence, 24% contained variable copies of HPV between the breakpoints, a phenomenon we termed heterologous integration. Analysis of DNA methylation within and in proximity to the HPV genome at individual integration events revealed relationships between methylation status of the integrant and its orientation and structure. Dysregulation of the human epigenome and neighboring gene expression in cis with the HPV-integrated allele was observed over megabase-ranges of the genome. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.

2.
BMC Bioinformatics ; 23(1): 246, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729491

RESUMO

BACKGROUND: De novo genome assembly is essential to modern genomics studies. As it is not biased by a reference, it is also a useful method for studying genomes with high variation, such as cancer genomes. De novo short-read assemblers commonly use de Bruijn graphs, where nodes are sequences of equal length k, also known as k-mers. Edges in this graph are established between nodes that overlap by [Formula: see text] bases, and nodes along unambiguous walks in the graph are subsequently merged. The selection of k is influenced by multiple factors, and optimizing this value results in a trade-off between graph connectivity and sequence contiguity. Ideally, multiple k sizes should be used, so lower values can provide good connectivity in lesser covered regions and higher values can increase contiguity in well-covered regions. However, current approaches that use multiple k values do not address the scalability issues inherent to the assembly of large genomes. RESULTS: Here we present RResolver, a scalable algorithm that takes a short-read de Bruijn graph assembly with a starting k as input and uses a k value closer to that of the read length to resolve repeats. RResolver builds a Bloom filter of sequencing reads which is used to evaluate the assembly graph path support at branching points and removes paths with insufficient support. RResolver runs efficiently, taking only 26 min on average for an ABySS human assembly with 48 threads and 60 GiB memory. Across all experiments, compared to a baseline assembly, RResolver improves scaffold contiguity (NGA50) by up to 15% and reduces misassemblies by up to 12%. CONCLUSIONS: RResolver adds a missing component to scalable de Bruijn graph genome assembly. By improving the initial and fundamental graph traversal outcome, all downstream ABySS algorithms greatly benefit by working with a more accurate and less complex representation of the genome. The RResolver code is integrated into ABySS and is available at https://github.com/bcgsc/abyss/tree/master/RResolver .


Assuntos
Genômica , Software , Algoritmos , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
3.
Front Genet ; 12: 665888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149808

RESUMO

RNA sequencing (RNAseq) has been widely used to generate bulk gene expression measurements collected from pools of cells. Only relatively recently have single-cell RNAseq (scRNAseq) methods provided opportunities for gene expression analyses at the single-cell level, allowing researchers to study heterogeneous mixtures of cells at unprecedented resolution. Tumors tend to be composed of heterogeneous cellular mixtures and are frequently the subjects of such analyses. Extensive method developments have led to several protocols for scRNAseq but, owing to the small amounts of RNA in single cells, technical constraints have required compromises. For example, the majority of scRNAseq methods are limited to sequencing only the 3' or 5' termini of transcripts. Other protocols that facilitate full-length transcript profiling tend to capture only polyadenylated mRNAs and are generally limited to processing only 96 cells at a time. Here, we address these limitations and present a novel protocol that allows for the high-throughput sequencing of full-length, total RNA at single-cell resolution. We demonstrate that our method produced strand-specific sequencing data for both polyadenylated and non-polyadenylated transcripts, enabled the profiling of transcript regions beyond only transcript termini, and yielded data rich enough to allow identification of cell types from heterogeneous biological samples.

4.
Nat Commun ; 12(1): 2474, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931648

RESUMO

As more clinically-relevant genomic features of myeloid malignancies are revealed, it has become clear that targeted clinical genetic testing is inadequate for risk stratification. Here, we develop and validate a clinical transcriptome-based assay for stratification of acute myeloid leukemia (AML). Comparison of ribonucleic acid sequencing (RNA-Seq) to whole genome and exome sequencing reveals that a standalone RNA-Seq assay offers the greatest diagnostic return, enabling identification of expressed gene fusions, single nucleotide and short insertion/deletion variants, and whole-transcriptome expression information. Expression data from 154 AML patients are used to develop a novel AML prognostic score, which is strongly associated with patient outcomes across 620 patients from three independent cohorts, and 42 patients from a prospective cohort. When combined with molecular risk guidelines, the risk score allows for the re-stratification of 22.1 to 25.3% of AML patients from three independent cohorts into correct risk groups. Within the adverse-risk subgroup, we identify a subset of patients characterized by dysregulated integrin signaling and RUNX1 or TP53 mutation. We show that these patients may benefit from therapy with inhibitors of focal adhesion kinase, encoded by PTK2, demonstrating additional utility of transcriptome-based testing for therapy selection in myeloid malignancy.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Estudos de Coortes , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feminino , Fusão Gênica , Humanos , Mutação INDEL , Integrinas/genética , Integrinas/metabolismo , Leucemia Mieloide Aguda/genética , Masculino , Polimorfismo de Nucleotídeo Único , Prognóstico , Estudos Prospectivos , RNA-Seq , Fatores de Risco , Transdução de Sinais/genética , Análise de Sobrevida , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
5.
Bioinformatics ; 36(7): 2256-2257, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790154

RESUMO

SUMMARY: Presence or absence of gene fusions is one of the most important diagnostic markers in many cancer types. Consequently, fusion detection methods using various genomics data types, such as RNA sequencing (RNA-seq) are valuable tools for research and clinical applications. While information-rich RNA-seq data have proven to be instrumental in discovery of a number of hallmark fusion events, bioinformatics tools to detect fusions still have room for improvement. Here, we present Fusion-Bloom, a fusion detection method that leverages recent developments in de novo transcriptome assembly and assembly-based structural variant calling technologies (RNA-Bloom and PAVFinder, respectively). We benchmarked Fusion-Bloom against the performance of five other state-of-the-art fusion detection tools using multiple datasets. Overall, we observed Fusion-Bloom to display a good balance between detection sensitivity and specificity. We expect the tool to find applications in translational research and clinical genomics pipelines. AVAILABILITY AND IMPLEMENTATION: Fusion-Bloom is implemented as a UNIX Make utility, available at https://github.com/bcgsc/pavfinder and released under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Transcriptoma , Genômica , RNA , Análise de Sequência de RNA
6.
BMC Med Genomics ; 11(1): 79, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200994

RESUMO

BACKGROUND: RNA-seq is a powerful and cost-effective technology for molecular diagnostics of cancer and other diseases, and it can reach its full potential when coupled with validated clinical-grade informatics tools. Despite recent advances in long-read sequencing, transcriptome assembly of short reads remains a useful and cost-effective methodology for unveiling transcript-level rearrangements and novel isoforms. One of the major concerns for adopting the proven de novo assembly approach for RNA-seq data in clinical settings has been the analysis turnaround time. To address this concern, we have developed a targeted approach to expedite assembly and analysis of RNA-seq data. RESULTS: Here we present our Targeted Assembly Pipeline (TAP), which consists of four stages: 1) alignment-free gene-level classification of RNA-seq reads using BioBloomTools, 2) de novo assembly of individual targets using Trans-ABySS, 3) alignment of assembled contigs to the reference genome and transcriptome with GMAP and BWA and 4) structural and splicing variant detection using PAVFinder. We show that PAVFinder is a robust gene fusion detection tool when compared to established methods such as Tophat-Fusion and deFuse on simulated data of 448 events. Using the Leucegene acute myeloid leukemia (AML) RNA-seq data and a set of 580 COSMIC target genes, TAP identified a wide range of hallmark molecular anomalies including gene fusions, tandem duplications, insertions and deletions in agreement with published literature results. Moreover, also in this dataset, TAP captured AML-specific splicing variants such as skipped exons and novel splice sites reported in studies elsewhere. Running time of TAP on 100-150 million read pairs and a 580-gene set is one to 2 hours on a 48-core machine. CONCLUSIONS: We demonstrated that TAP is a fast and robust RNA-seq variant detection pipeline that is potentially amenable to clinical applications. TAP is available at http://www.bcgsc.ca/platform/bioinfo/software/pavfinder.


Assuntos
Variação Genética , Genômica/métodos , RNA/metabolismo , Interface Usuário-Computador , Humanos , Mutação INDEL , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , RNA/química , RNA/genética , Splicing de RNA , Análise de Sequência de RNA
7.
BMC Genomics ; 19(1): 536, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005633

RESUMO

BACKGROUND: Alternative polyadenylation (APA) results in messenger RNA molecules with different 3' untranslated regions (3' UTRs), affecting the molecules' stability, localization, and translation. APA is pervasive and implicated in cancer. Earlier reports on APA focused on 3' UTR length modifications and commonly characterized APA events as 3' UTR shortening or lengthening. However, such characterization oversimplifies the processing of 3' ends of transcripts and fails to adequately describe the various scenarios we observe. RESULTS: We built a cloud-based targeted de novo transcript assembly and analysis pipeline that incorporates our previously developed cleavage site prediction tool, KLEAT. We applied this pipeline to elucidate the APA profiles of 114 genes in 9939 tumor and 729 tissue normal samples from The Cancer Genome Atlas (TCGA). The full set of 10,668 RNA-Seq samples from 33 cancer types has not been utilized by previous APA studies. By comparing the frequencies of predicted cleavage sites between normal and tumor sample groups, we identified 77 events (i.e. gene-cancer type pairs) of tumor-specific APA regulation in 13 cancer types; for 15 genes, such regulation is recurrent across multiple cancers. Our results also support a previous report showing the 3' UTR shortening of FGF2 in multiple cancers. However, over half of the events we identified display complex changes to 3' UTR length that resist simple classification like shortening or lengthening. CONCLUSIONS: Recurrent tumor-specific regulation of APA is widespread in cancer. However, the regulation pattern that we observed in TCGA RNA-seq data cannot be described as straightforward 3' UTR shortening or lengthening. Continued investigation into this complex, nuanced regulatory landscape will provide further insight into its role in tumor formation and development.


Assuntos
Neoplasias/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Computação em Nuvem , Bases de Dados Genéticas , Fator 2 de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia/genética , Neoplasias/patologia , Poliadenilação , Clivagem do RNA , RNA Mensageiro/metabolismo , Software
8.
Nat Cell Biol ; 17(3): 311-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25686251

RESUMO

Although recent studies have shown that adenosine-to-inosine (A-to-I) RNA editing occurs in microRNAs (miRNAs), its effects on tumour growth and metastasis are not well understood. We present evidence of CREB-mediated low expression of ADAR1 in metastatic melanoma cell lines and tumour specimens. Re-expression of ADAR1 resulted in the suppression of melanoma growth and metastasis in vivo. Consequently, we identified three miRNAs undergoing A-to-I editing in the weakly metastatic melanoma but not in strongly metastatic cell lines. One of these miRNAs, miR-455-5p, has two A-to-I RNA-editing sites. The biological function of edited miR-455-5p is different from that of the unedited form, as it recognizes a different set of genes. Indeed, wild-type miR-455-5p promotes melanoma metastasis through inhibition of the tumour suppressor gene CPEB1. Moreover, wild-type miR-455 enhances melanoma growth and metastasis in vivo, whereas the edited form inhibits these features. These results demonstrate a previously unrecognized role for RNA editing in melanoma progression.


Assuntos
Adenosina/metabolismo , Regulação Neoplásica da Expressão Gênica , Inosina/metabolismo , Melanoma/genética , Edição de RNA , Neoplasias Cutâneas/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Progressão da Doença , Feminino , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , MicroRNAs , Dados de Sequência Molecular , Metástase Neoplásica , Transplante de Neoplasias , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
9.
BMC Genomics ; 14: 550, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23941359

RESUMO

BACKGROUND: Chimeric transcripts, including partial and internal tandem duplications (PTDs, ITDs) and gene fusions, are important in the detection, prognosis, and treatment of human cancers. RESULTS: We describe Barnacle, a production-grade analysis tool that detects such chimeras in de novo assemblies of RNA-seq data, and supports prioritizing them for review and validation by reporting the relative coverage of co-occurring chimeric and wild-type transcripts. We demonstrate applications in large-scale disease studies, by identifying PTDs in MLL, ITDs in FLT3, and reciprocal fusions between PML and RARA, in two deeply sequenced acute myeloid leukemia (AML) RNA-seq datasets. CONCLUSIONS: Our analyses of real and simulated data sets show that, with appropriate filter settings, Barnacle makes highly specific predictions for three types of chimeric transcripts that are important in a range of cancers: PTDs, ITDs, and fusions. High specificity makes manual review and validation efficient, which is necessary in large-scale disease studies. Characterizing an extended range of chimera types will help generate insights into progression, treatment, and outcomes for complex diseases.


Assuntos
Duplicação Gênica/genética , Perfilação da Expressão Gênica/métodos , Fusão Gênica/genética , Genômica , Neoplasias da Mama/genética , Éxons/genética , Humanos , Leucemia Mieloide Aguda/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , Estatística como Assunto
10.
J Pathol ; 230(3): 249-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616356

RESUMO

Parathyroid carcinoma is a rare endocrine malignancy with an estimated incidence of less than 1 per million population. Excessive secretion of parathyroid hormone, extremely high serum calcium level, and the deleterious effects of hypercalcaemia are the clinical manifestations of the disease. Up to 60% of patients develop multiple disease recurrences and although long-term survival is possible with palliative surgery, permanent remission is rarely achieved. Molecular drivers of sporadic parathyroid carcinoma have remained largely unknown. Previous studies, mostly based on familial cases of the disease, suggested potential roles for the tumour suppressor MEN1 and proto-oncogene RET in benign parathyroid tumourigenesis, while the tumour suppressor HRPT2 and proto-oncogene CCND1 may also act as drivers in parathyroid cancer. Here, we report the complete genomic analysis of a sporadic and recurring parathyroid carcinoma. Mutational landscapes of the primary and recurrent tumour specimens were analysed using high-throughput sequencing technologies. Such molecular profiling allowed for identification of somatic mutations never previously identified in this malignancy. These included single nucleotide point mutations in well-characterized cancer genes such as mTOR, MLL2, CDKN2C, and PIK3CA. Comparison of acquired mutations in patient-matched primary and recurrent tumours revealed loss of PIK3CA activating mutation during the evolution of the tumour from the primary to the recurrence. Structural variations leading to gene fusions and regions of copy loss and gain were identified at a single-base resolution. Loss of the short arm of chromosome 1, along with somatic missense and truncating mutations in CDKN2C and THRAP3, respectively, provides new evidence for the potential role of these genes as tumour suppressors in parathyroid cancer. The key somatic mutations identified in this study can serve as novel diagnostic markers as well as therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Genômica , Recidiva Local de Neoplasia/genética , Neoplasias das Paratireoides/genética , Adulto , Sequência de Bases , Cálcio/sangue , Transformação Celular Neoplásica , Classe I de Fosfatidilinositol 3-Quinases , Inibidor de Quinase Dependente de Ciclina p18/genética , DNA de Neoplasias/química , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Dosagem de Genes , Fusão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Hormônio Paratireóideo/metabolismo , Neoplasias das Paratireoides/patologia , Neoplasias das Paratireoides/cirurgia , Fosfatidilinositol 3-Quinases/genética , Polimorfismo de Nucleotídeo Único , Proto-Oncogene Mas , RNA Neoplásico/genética , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
11.
Nature ; 488(7409): 49-56, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22832581

RESUMO

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-ß signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.


Assuntos
Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/genética , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Proteínas de Transporte/genética , Neoplasias Cerebelares/metabolismo , Criança , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Genes myc/genética , Genômica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Fusão Oncogênica/genética , Proteínas/genética , RNA Longo não Codificante , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Translocação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA