Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37760008

RESUMO

Cisplatin-induced acute kidney injury (AKI) is an important factor that limits the clinical use of this drug for the treatment of malignancies. Oxidative stress and inflammation are considered to be the main causes of not only cisplatin-induced death of cancer cells but also cisplatin-induced AKI. Therefore, developing agents that exert antioxidant and anti-inflammatory effects without weakening the anti-tumor effects of cisplatin is highly desirable. Carbon monoxide (CO) has recently attracted interest due to its antioxidant, anti-inflammatory, and anti-tumor properties. Herein, we report that CO-loaded red blood cell (CO-RBC) exerts renoprotective effects on cisplatin-induced AKI. Cisplatin treatment was found to reduce cell viability in proximal tubular cells via oxidative stress and inflammation. Cisplatin-induced cytotoxicity, however, was suppressed by the CO-RBC treatment. The intraperitoneal administration of cisplatin caused an elevation in the blood urea nitrogen and serum creatinine levels. The administration of CO-RBC significantly suppressed these elevations. Furthermore, the administration of CO-RBC also reduced the deterioration of renal histology and tubular cell injury through its antioxidant and anti-inflammatory effects in cisplatin-induced AKI mice. Thus, our data suggest that CO-RBC has the potential to substantially prevent the onset of cisplatin-induced AKI, which, in turn, may improve the usefulness of cisplatin-based chemotherapy.

2.
Genes Cells ; 28(5): 374-382, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811310

RESUMO

Human epidermal growth factor receptor (HER) family proteins are currently major targets of therapeutic monoclonal antibodies against various epithelial cancers. However, the resistance of cancer cells to HER family-targeted therapies, which may be caused by cancer heterogeneity and persistent HER phosphorylation, often reduces overall therapeutic effects. We herein showed that a newly discovered molecular complex between CD98 and HER2 affected HER function and cancer cell growth. The immunoprecipitation of the HER2 or HER3 protein from lysates of SKBR3 breast cancer (BrCa) cells revealed the HER2-CD98 or HER3-CD98 complex. The knockdown of CD98 by small interfering RNAs inhibited the phosphorylation of HER2 in SKBR3 cells. A bispecific antibody (BsAb) that recognized the HER2 and CD98 proteins was constructed from a humanized anti-HER2 (SER4) IgG and an anti-CD98 (HBJ127) single chain variable fragment, and this BsAb significantly inhibited the cell growth of SKBR3 cells. Prior to the inhibition of AKT phosphorylation, BsAb inhibited the phosphorylation of HER2, however, significant inhibition of HER2 phosphorylation was not observed in anti-HER2 pertuzumab, trastuzumab, SER4 or anti-CD98 HBJ127 in SKBR3 cells. The dual targeting of HER2 and CD98 has potential as a new therapeutic strategy for BrCa.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/metabolismo , Trastuzumab/uso terapêutico , Anticorpos Monoclonais/metabolismo , Fosforilação , Linhagem Celular Tumoral
3.
Stem Cell Res Ther ; 12(1): 582, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809720

RESUMO

BACKGROUND: Biliary atresia (BA) is a severe hepatobiliary disease in infants that ultimately results in hepatic failure; however, its pathological mechanism is poorly elucidated. Current surgical options, including Kasai hepatoportoenterostomy and orthotopic liver organ transplantations, are palliative; thus, innovation in BA therapy is urgent. METHODS: To examine whether BA-specific post-natal stem cells are feasible for autologous cell source for BA treatment, we isolated from human exfoliated deciduous teeth, namely BA-SHED, using a standard colony-forming unit fibroblast (CFU-F) method and compared characteristics as mesenchymal stem cells (MSCs) to healthy donor-derived control SHED, Cont-SHED. BA-SHED and Cont-SHED were intrasplenically transplanted into chronic carbon tetrachloride (CCl4)-induced liver fibrosis model mice, followed by the analysis of bile drainage function and donor integration in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile ducts in the recipient's liver using anti-human specific keratin 19 (KRT19) antibody. RESULTS: BA-SHED formed CFU-F, expressed MSC surface markers, and exhibited in vitro mesenchymal multipotency similar to Cont-SHED. BA-SHED showed less in vitro hepatogenic potency than Cont-SHED. Cont-SHED represented in vivo bile drainage function and KRT19-positive biliary regeneration in chronic carbon tetrachloride-induced liver fibrosis model mice. BA-SHED failed to show in vivo biliary potency and bile drainage function compared to Cont-SHED. CONCLUSION: These findings indicate that BA-SHED are not feasible source for BA treatment, because BA-SHED may epigenetically modify the underlying prenatal and perinatal BA environments. In conclusion, these findings suggest that BA-SHED-based studies may provide a platform for understanding the underlying molecular mechanisms of BA development and innovative novel modalities in BA research and treatment.


Assuntos
Atresia Biliar , Transplante de Fígado , Células-Tronco Mesenquimais , Animais , Atresia Biliar/metabolismo , Atresia Biliar/patologia , Humanos , Lactente , Cirrose Hepática/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco/metabolismo
4.
Sci Rep ; 11(1): 7953, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846468

RESUMO

The molecular mechanism for acute kidney injury (AKI) and its progression to chronic kidney disease (CKD) continues to be unclear. In this study, we investigated the pathophysiological role of the acute phase protein α1-acid glycoprotein (AGP) in AKI and its progression to CKD using AGP KO mice. Plasma AGP levels in WT mice were increased by about 3.5-fold on day 1-2 after renal ischemia-reperfusion (IR), and these values then gradually decreased to the level before renal IR on day 7-14. On day 1 after renal IR, the AGP KO showed higher renal dysfunction, tubular injury and renal inflammation as compared with WT. On day 14, renal function, tubular injury and renal inflammation in WT had recovered, but the recovery was delayed, and renal fibrosis continued to progress in AGP KO. These results obtained from AGP KO were rescued by the administration of human-derived AGP (hAGP) simultaneously with renal IR. In vitro experiments using RAW264.7 cells showed hAGP treatment suppressed the LPS-induced macrophage inflammatory response. These data suggest that endogenously induced AGP in early renal IR functions as a renoprotective molecule via its anti-inflammatory action. Thus, AGP represents a potential target molecule for therapeutic development in AKI and its progression CKD.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Anti-Inflamatórios/uso terapêutico , Progressão da Doença , Insuficiência Renal Crônica/tratamento farmacológico , alfa-Macroglobulinas/uso terapêutico , Injúria Renal Aguda/sangue , Injúria Renal Aguda/complicações , Animais , Anti-Inflamatórios/farmacologia , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Testes de Função Renal , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/sangue , alfa-Macroglobulinas/administração & dosagem , alfa-Macroglobulinas/farmacologia
5.
Sci Rep ; 10(1): 20635, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244034

RESUMO

The mortality of patients with acute kidney injury (AKI) remains high due to AKI associated-lung injury. An effective strategy for preventing both AKI and AKI-associated lung injury is urgently needed. Thioredoxin-1 (Trx) is a redox-active protein that possesses anti-oxidative, anti-apoptotic and anti-inflammatory properties including modulation of macrophage migration inhibitory factor (MIF), but its short half-life limits its clinical application. Therefore, we examined the preventive effect of a long-acting Trx, which is a fusion protein of albumin and Trx (HSA-Trx), against AKI and AKI-associated lung injury. Recombinant HSA-Trx was expressed using a Pichia expression system. AKI-induced lung injury mice were generated by bilateral renal ischemia reperfusion injury (IRI). HSA-Trx administration attenuated renal IRI and its-associated lung injury. Both renal and pulmonary oxidative stress were suppressed by HSA-Trx. Moreover, HSA-Trx inhibited elevations of plasma IL-6 and TNF-α level, and suppressed IL-6-CXCL1/2-mediated neutrophil infiltration into lung and TNF-α-mediated pulmonary apoptosis. Additionally, HSA-Trx suppressed renal IRI-induced MIF expression in kidney and lung. Administration of HSA-Trx resulted in a significant increase in the survival rate of renal IRI mice. Collectively, HSA-Trx could have therapeutic utility in preventing both AKI and AKI-associated lung injury as a consequence of its systemic and sustained multiple biological action.


Assuntos
Injúria Renal Aguda/prevenção & controle , Preparações de Ação Retardada/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Tiorredoxinas/farmacologia , Injúria Renal Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Interleucina-6/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Albumina Sérica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Stem Cell Res Ther ; 11(1): 296, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680564

RESUMO

BACKGROUND: Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) recovers bone loss in animal models of osteoporosis; however, the mechanisms underlying this remain unclear. Here, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) rescue osteoporotic phenotype. METHODS: EVs were isolated from culture supernatant of SHED. SHED-EVs were treated with or without ribonuclease and systemically administrated into ovariectomized mice, followed by the function of recipient bone marrow mesenchymal stem cells (BMMSCs) including telomerase activity, osteoblast differentiation, and sepmaphorine-3A (SEMA3A) secretion. Subsequently, human BMMSCs were stimulated by SHED-EVs with or without ribonuclease treatment, and then human BMMSCs were examined regarding the function of telomerase activity, osteoblast differentiation, and SEMA3A secretion. Furthermore, SHED-EV-treated human BMMSCs were subcutaneously transplanted into the dorsal skin of immunocompromised mice with hydroxyapatite tricalcium phosphate (HA/TCP) careers and analyzed the de novo bone-forming ability. RESULTS: We revealed that systemic SHED-EV-infusion recovered bone volume in ovariectomized mice and improved the function of recipient BMMSCs by rescuing the mRNA levels of Tert and telomerase activity, osteoblast differentiation, and SEMA3A secretion. Ribonuclease treatment depleted RNAs, including microRNAs, within SHED-EVs, and these RNA-depleted SHED-EVs attenuated SHED-EV-rescued function of recipient BMMSCs in the ovariectomized mice. These findings were supported by in vitro assays using human BMMSCs incubated with SHED-EVs. CONCLUSION: Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating postmenopausal osteoporosis by targeting the telomerase activity of recipient BMMSCs.


Assuntos
Vesículas Extracelulares , Osteoporose , Telomerase , Animais , Células da Medula Óssea , Camundongos , Osteoporose/terapia , Células-Tronco , Telomerase/genética
7.
Sci Rep ; 10(1): 11424, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651445

RESUMO

Renal fibrosis is a major factor in the progression of chronic kidney disease and the final common pathway of kidney injury. Therefore, the effective therapies against renal fibrosis are urgently needed. The objective of this study was to investigate the effect of Am80, a synthetic retinoic acid receptor (RAR) agonist, in the treatment of renal interstitial fibrosis using unilateral ureteral obstruction (UUO) mice. The findings indicate that Am80 treatment suppressed renal fibrosis and inflammation to the same degree as the naturally-occuring retinoic acid, all-trans retinoic acid (atRA). But the adverse effect of body weight loss in Am80-treated mice was lower compared to the atRA treatment. The hepatic mRNA levels of alpha-1-acid glycoprotein (AGP), a downstream molecule of RAR agonist, was increased following administration of Am80 to healthy mice. In addition, increased AGP mRNA expression was also observed in HepG2 cells and THP-1-derived macrophages that had been treated with Am80. AGP-knockout mice exacerbated renal fibrosis, inflammation and macrophage infiltration in UUO mice, indicating endogenous AGP played an anti-fibrotic and anti-inflammatory role during the development of renal fibrosis. We also found that no anti-fibrotic effect of Am80 was observed in UUO-treated AGP-knockout mice whereas atRA treatment tended to show a partial anti-fibrotic effect. These collective findings suggest that Am80 protects against renal fibrosis via being involved in AGP function.


Assuntos
Benzoatos/farmacologia , Rim/efeitos dos fármacos , Orosomucoide/metabolismo , Receptores do Ácido Retinoico/agonistas , Tetra-Hidronaftalenos/farmacologia , Animais , Fibrose/tratamento farmacológico , Células Hep G2 , Humanos , Inflamação , Rim/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores do Ácido Retinoico/metabolismo , Células THP-1
8.
Clin Biochem ; 81: 20-26, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32380091

RESUMO

OBJECTIVES: Cardiovascular disease is one of the major causes of death in patients with end-stage kidney disease who have undergone kidney transplantation. Since the complication of cardiovascular disease in patients with chronic kidney disease is strongly linked to oxidative stress, understanding the oxidative stress condition after kidney transplantation would be of great importance for the prevention of cardiovascular disease. This study examined whether improvement of renal function after kidney transplantation has an impact on the redox state of the Cys34 residue of albumin that reflects the level of oxidative stress in blood. DESIGN & METHODS: We enrolled 23 patients with end-stage renal failure who received kidney transplantation. All patients were followed for 180 days after transplantation. The fractions of albumin isoforms were determined by the electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) method. RESULTS: Serum creatinine decreased significantly immediately after kidney transplantation, suggesting successful transplantations. The ESI-TOFMS method identified three albumin isoforms cysteinylated at the Cys34 residue (Cys-Cys34-albumin) and the three corresponding albumin isoforms without Cys34 cysteinylation. The fraction of total Cys-Cys34-albumin decreased transiently after kidney transplantation, and was followed by an elevation at day 7 and gradual decrease thereafter until day 180. Meanwhile, reduced albumin concentration did not change until day 14 after kidney transplantation, then showed a significant increase compared to pre-transplant level at day 30 and remained stably elevated until day 180. CONCLUSIONS: Actual reduced albumin levels were found to exceed pre-transplant levels on or after day 30 following kidney transplantation unlike immediate restoration of renal function. Renal function was recovered immediately following kidney transplantation, but reduced albumen concentration increased above the pre-transplant levels only from day 30 after transplantation.


Assuntos
Cisteína/química , Falência Renal Crônica/terapia , Transplante de Rim/métodos , Estresse Oxidativo , Albumina Sérica/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Adulto , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Processamento de Proteína Pós-Traducional , Albumina Sérica/metabolismo
9.
J Control Release ; 324: 522-531, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32450094

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone-like protein that improves blood glucose and lipid metabolism. However, its short half-life and instability are bottlenecks to its clinical applications. In this study, to extend its pharmacological action, we created a stabilized mutant FGF21 (mFGF21:ΔHPIP, P171G, A180E, L118C-A134C, S167A) and then genetically fused it with human albumin (HSA-mFGF21) via a polypeptide linker. Physicochemical analyses suggested that HSA-mFGF21 was formed from both intact HSA and mFGF21. Pharmacokinetic findings indicated the half-life of HSA-mFGF21 was 20 times longer than that of FGF21. In addition, HSA-mFGF21 was persistently distributed in adipose tissue as a target tissue. The in vivo hypoglycemic activity of HSA-mFGF21 using streptozotocin (STZ)-induced type I diabetes model mice, in which insulin secretion was suppressed, showed that a single intravenous administration of HSA-mFGF21 rapidly alleviated hyperglycemia. At that time, HSA-mFGF21 increased GLUT1 mRNA expression in adipose tissue without having any effect on insulin secretion. A twice weekly administration of HSA-mFGF21 continuously suppressed blood glucose levels and ameliorated the abnormalities of adipose tissue induced by STZ treatment. Interestingly, HSA-mFGF21 showed no hypoglycemic effects in healthy mice. Together, HSA-mFGF21 could be a novel biotherapeutic for the treatment of metabolic disorders including diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 1 , Fatores de Crescimento de Fibroblastos , Albuminas , Animais , Fatores de Crescimento de Fibroblastos/genética , Hipoglicemiantes , Camundongos
10.
Kidney360 ; 1(5): 343-353, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35369369

RESUMO

Background: Recent clinical studies have shown that proteinuria is a critical factor in the progression of CKD and onset of cardiovascular disease. Inflammation and infiltration of macrophages into renal tissue are implicated as causes of proteinuria. α1-Acid glycoprotein (AGP), an acute-phase plasma protein, is leaked into the urine in patients with proteinuria. However, the relationship between urinary leakage of AGP, renal inflammation, and proteinuria remains unclear. Methods: Human AGP (hAGP) was exogenously administrated for 5 consecutive days to adriamycin-induced nephropathy model mice. Results: Adriamycin treatment increased urinary AGP, accompanied by decreased plasma AGP in mice. Exogenous hAGP administration to adriamycin-treated mice suppressed proteinuria, renal histologic injury, and inflammation. hAGP administration increased renal CD163 expression, a marker of anti-inflammatory macrophages. Similar changes were observed in PMA-differentiated THP-1 cells treated with hAGP. Even in the presence of LPS, hAGP treatment increased CD163/IL-10 expression in differentiated THP-1 cells. Conclusions: AGP alleviates proteinuria and renal injury in mice with proteinuric kidney disease via induction of CD163-expressing macrophages with anti-inflammatory function. The results demonstrate that endogenous AGP could work to protect against glomerular disease. Thus, AGP supplementation could be a possible new therapeutic intervention for patients with glomerular disease.


Assuntos
Nefropatias , Orosomucoide , Animais , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Doxorrubicina/efeitos adversos , Humanos , Nefropatias/induzido quimicamente , Macrófagos/metabolismo , Camundongos , Orosomucoide/metabolismo , Receptores de Superfície Celular
11.
J Endod ; 45(5): 591-598.e6, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30952372

RESUMO

INTRODUCTION: Stem cells isolated from the root apical papilla of human teeth (stem cells from the apical papilla [SCAPs]) are capable of forming tooth root dentin and are a feasible source for bioengineered tooth root regeneration. In this study, we examined the effect of acetylsalicylic acid (ASA) on odontogenic differentiation of SCAPs in vitro and in vivo. METHODS: SCAPs were cultured under odontogenic conditions supplemented with or without ASA. ASA-treated SCAPs were also subcutaneously transplanted into immunocompromised mice. RESULTS: ASA accelerates in vitro and in vivo odontogenic differentiation of SCAPs associated with down-regulation of runt-related nuclear factor 2 and up-regulation of specificity protein 7, nuclear factor I C, and dentin phosphoprotein. ASA up-regulated the phosphorylation of AKT in the odontogenic SCAPs. Of interest, pretreatments with phosphoinositide 3-kinase inhibitor LY294402 and small interfering RNA for AKT promoted ASA-induced in vitro and in vivo odontogenic differentiation of SCAPs. LY294402 and small interfering RNA for AKT also suppressed the ASA-induced expression of runt-related nuclear factor 2 and enhanced ASA-induced expression of specificity protein 7, nuclear factor I C, and dentin phosphoprotein in SCAPs. CONCLUSIONS: These findings suggest that a combination of ASA treatment and suppressive regulation of the phosphoinositide 3-kinase-AKT signaling pathway is a novel approach for SCAP-based tooth root regeneration.


Assuntos
Anti-Inflamatórios não Esteroides , Aspirina , Papila Dentária , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Células-Tronco , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Sci Rep ; 8(1): 17329, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478350

RESUMO

Renal fibrosis, the characteristic feature of progressive chronic kidney disease, is associated with unremitting renal inflammation. Although it is reported that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, elicits an anti-renal fibrotic effect, its molecular mechanism is still unknown. In this study, renal fibrosis and inflammation observed in the kidney of unilateral ureteral obstruction (UUO) mice were reduced by the treatment of 1,25(OH)2D3. The plasma protein level of alpha-1-acid glycoprotein (AGP), a downstream molecule of 1,25(OH)2D3, was increased following administration of 1,25(OH)2D3. Additionally, increased mRNA expression of ORM1, an AGP gene, was observed in HepG2 cells and THP-1-derived macrophages that treated with 1,25(OH)2D3. To investigate the involvement of AGP, exogenous AGP was administered to UUO mice, resulting in attenuated renal fibrosis and inflammation. We also found the mRNA expression of CD163, a monocyte/macrophage marker with anti-inflammatory potential, was increased in THP-1-derived macrophages under stimulus from 1,25(OH)2D3 or AGP. Moreover, AGP prevented lipopolysaccharide-induced macrophage activation. Thus, AGP could be a key molecule in the protective effect of 1,25(OH)2D3 against renal fibrosis. Taken together, AGP may replace vitamin D to function as an important immune regulator, offering a novel therapeutic strategy for renal inflammation and fibrosis.


Assuntos
Nefropatias/patologia , Nefropatias/prevenção & controle , Orosomucoide/metabolismo , Vitamina D/análogos & derivados , Animais , Modelos Animais de Doenças , Fibrose , Células Hep G2 , Humanos , Nefropatias/etiologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos ICR , Orosomucoide/genética , Obstrução Ureteral/complicações , Vitamina D/farmacocinética , Vitamina D/farmacologia
13.
Stem Cell Res Ther ; 9(1): 334, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486861

RESUMO

BACKGROUND: Stem cells from apical papilla (SCAP) are a subpopulation of mesenchymal stem cells (MSCs) isolated from the apical papilla of the developing tooth root apex of human teeth. Because of their osteogenic/dentinogenic capacity, SCAP are considered as a source for bone and dentin regeneration. However, little is understood about the molecular mechanism of osteogenic/dentinogenic differentiation of SCAP. Phosphoinositide 3 kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) signal pathway participates in regulating the differentiation of various cell types, such as MSCs. In this study, we examined the role of the PI3K-AKT-mTOR signal pathway in the osteogenic/dentinogenic differentiation of SCAP. Moreover, we challenge to fabricate scaffold-free SCAP-based spheroidal calcified constructs. METHODS: SCAP were pretreated with or without small interfering RNA for AKT (AKT siRNA), PI3K inhibitor LY294402, and mTOR inhibitor rapamycin and were cultured under osteogenic/dentinogenic differentiation to examine in vitro and in vivo calcified tissue formation. Moreover, SCAP-based cell aggregates were pretreated with or without LY294402 and rapamycin. The cell aggregates were cultured under osteogenic/dentinogenic condition and were analyzed the calcification of the aggregates. RESULTS: Pretreatment with AKT siRNA, LY294402, and rapamycin enhances the in vitro and in vivo calcified tissue-forming capacity of SCAP. SCAP were fabricated as scaffold-free spheroids and were induced into forming calcified 3D constructs. The calcified density of the spheroidal constructs was enhanced when the spheroids were pretreated with LY294402 and rapamycin. CONCLUSIONS: Our findings indicate that the suppression of PI3K-AKT-mTOR signal pathway plays a role in not only enhancing the in vivo and in vitro osteogenic/dentinogenic differentiation of SCAP, but also promoting the calcification of scaffold-free SCAP-based calcified constructs. These findings suggest that a suppressive regulation of PI3K-AKT-mTOR signal pathway is a novel approach for SCAP-based bone and dentin regeneration.


Assuntos
Papila Dentária/citologia , Dentinogênese , Células-Tronco Mesenquimais/citologia , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dentina/metabolismo , Dentinogênese/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Sirolimo/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Regulação para Cima , Adulto Jovem
14.
J Control Release ; 277: 23-34, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29530390

RESUMO

Human serum albumin (HSA) is a superior carrier for delivering extracellular drugs. However, the development of a cell-penetrating HSA remains a great challenge due to its low membrane permeability. We report herein on the design of a series of palmitoyl-poly-arginine peptides (CPPs) and an evaluation of their cell-penetrating effects after forming a complex with HSA for use in intracellular drug delivery. The palmitoyl CPPs forms a stable complex with HSA by anchoring itself to the high affinity palmitate binding sites of HSA. Among the CPPs evaluated, a cyclic polypeptide composed of D-dodecaarginines, palmitoyl-cyclic-(D-Arg)12 was the most effective for facilitating the cellular uptake of HSA by HeLa cells. Such a superior cell-penetrating capability is primarily mediated by macropinocytosis. The effect of the CPP on pharmacological activity was examined using three drugs loaded in HSA via three different methods: a) an HSA-paclitaxel complex, b) an HSA-doxorubicin covalent conjugate and c) an HSA-thioredoxin fusion protein. The results showed that cell-penetrating efficiency was increased with a corresponding and significant enhancement in pharmacological activity. In conclusion, palmitoyl-cyclic-(D-Arg)12/HSA is a versatile cell-penetrating drug delivery system with great potential for use as a nano-carrier for a wide diversity of pharmaceutical applications.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Nanopartículas/administração & dosagem , Albumina Sérica Humana/administração & dosagem , Permeabilidade da Membrana Celular/fisiologia , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Albumina Sérica Humana/síntese química , Albumina Sérica Humana/metabolismo , Relação Estrutura-Atividade
15.
Sci Rep ; 8(1): 3419, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467418

RESUMO

Nitric oxide (NO) is thought to play a pivotal regulatory role in dental pulp tissues under both physiological and pathological conditions. However, little is known about the NO functions in dental pulp stem cells (DPSCs). We examined the direct actions of a spontaneous NO gas-releasing donor, NOC-18, on the odontogenic capacity of rat DPSCs (rDPSCs). In the presence of NOC-18, rDPSCs were transformed into odontoblast-like cells with long cytoplasmic processes and a polarized nucleus. NOC-18 treatment increased alkaline phosphatase activity and enhanced dentin-like mineralized tissue formation and the expression levels of several odontoblast-specific genes, such as runt related factor 2, dentin matrix protein 1 and dentin sialophosphoprotein, in rDPSCs. In contrast, carboxy-PTIO, a NO scavenger, completely suppressed the odontogenic capacity of rDPSCs. This NO-promoted odontogenic differentiation was activated by tumor necrosis factor-NF-κB axis in rDPSCs. Further in vivo study demonstrated that NOC-18-application in a tooth cavity accelerated tertiary dentin formation, which was associated with early nitrotyrosine expression in the dental pulp tissues beneath the cavity. Taken together, the present findings indicate that exogenous NO directly induces the odontogenic capacity of rDPSCs, suggesting that NO donors might offer a novel host DPSC-targeting alternative to current pulp capping agents in endodontics.


Assuntos
Polpa Dentária/citologia , Doadores de Óxido Nítrico/farmacologia , Compostos Nitrosos/farmacologia , Odontogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/efeitos dos fármacos , Masculino , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Ratos Wistar , Células-Tronco/citologia
16.
J Pharm Sci ; 107(3): 848-855, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29074377

RESUMO

Chronic kidney disease (CKD) is accompanied by a variety of complications, typically renal anemia and kidney fibrosis. Accordingly, it is desirable to develop the novel therapeutics that can treat these CKD conditions. Since nitric oxide (NO) has multiple functions including hypoxia inducible factor stabilizing, anti-inflammatory, anti-oxidative, and anti-apoptoic activities, the use of NO for the CKD therapy has attracted considerable interest. Here, we evaluate the therapeutic impacts of S-nitrosated human serum albumin (SNO-HSA), a long-lasting NO donor, on 2 animal models of CKD. SNO-HSA increased the expression of erythropoietin (EPO), VEGF, and eNOS by stabilizing hypoxia inducible factor-1α in HepG2 and HK-2 cells. SNO-HSA increased hematopoiesis in both healthy and renal anemia rats, suggesting the promotion of EPO production. In unilateral ureteral obstruction-treated mice, SNO-HSA ameliorated kidney fibrosis by suppressing the accumulation of renal extracellular matrix. SNO-HSA also inhibited unilateral ureteral obstruction-induced α-smooth muscle actin increase and E-cadherin decrease, suggesting that SNO-HSA might suppress the accumulation of myofibroblasts, an important factor of fibrosis. SNO-HSA also inhibited the elevations of fibrosis factors, such as transforming growth factor-ß, interleukin-6, and oxidative stress, while it increased EPO production, an anti-fibrosis factor. In conclusion, SNO-HSA has the potential to function as a dual therapeutics for renal anemia and kidney fibrosis.


Assuntos
Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Compostos Nitrosos/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Albumina Sérica Humana/farmacologia , Anemia/tratamento farmacológico , Anemia/metabolismo , Animais , Linhagem Celular Tumoral , Eritropoetina/metabolismo , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Teóricos , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar , Insuficiência Renal Crônica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Biochem Pharmacol ; 145: 192-201, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843775

RESUMO

Chronic kidney disease (CKD), which affects, not only renal clearance, but also non-renal clearance, is accompanied by a decline in renal function. Although it has been suggested that humoral factors, such as uremic toxins that accumulate in the body under CKD conditions, could be involved in the changes associated with non-renal drug clearance, the overall process is not completely understood. In this study, we report on the role of parathyroid hormone (PTH), a middle molecule uremic toxin, on the expression of drug metabolizing or transporting proteins using rats with secondary hyperparathyroidism (SHPT) as models. In SHPT rats, hepatic and intestinal CYP3A expression was suppressed, but the changes were recovered by the administration of the calcimimetic cinacalcet, a PTH suppressor. Under the same experimental conditions, a pharmacokinetic study using orally administered midazolam, a substrate for CYP3A, showed that the AUC was increased by 5 times in SHPT rats, but that was partially recovered by a cinacalcet treatment. This was directly tested in rat primary hepatocytes and intestinal Caco-2 cells where the expression of the CYP3A protein was down-regulated by PTH (1-34). In Caco-2 cells, PTH (1-34) down-regulated the expression of CYP3A mRNA, but an inactive PTH derivative (13-34) had no effect. 8-Bromo-cyclic adenosine monophosphate, a membrane-permeable cAMP analog, reduced mRNA expression of CYP3A whereas the inhibitors of PI3K, NF-κB, PKC and PKA reversed the PTH-induced CYP3A down-regulation. These results suggest that PTH down-regulates CYP3A through multiple signaling pathways, including the PI3K/PKC/PKA/NF-κB pathway after the elevation of intracellular cAMP, and the effect of PTH can be prevented by cinacalcet treatment.


Assuntos
AMP Cíclico/metabolismo , Citocromo P-450 CYP3A/metabolismo , Regulação para Baixo/fisiologia , Hormônio Paratireóideo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Animais , Células CACO-2 , Cinacalcete/toxicidade , AMP Cíclico/genética , Citocromo P-450 CYP3A/genética , Moduladores GABAérgicos/farmacocinética , Regulação Enzimológica da Expressão Gênica/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hiperparatireoidismo/induzido quimicamente , Hiperparatireoidismo/metabolismo , Masculino , Midazolam/farmacocinética , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteína Quinase C/genética , Distribuição Aleatória , Ratos , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais
18.
J Cachexia Sarcopenia Muscle ; 8(5): 735-747, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28608457

RESUMO

BACKGROUND: Chronic kidney disease (CKD) patients experience skeletal muscle wasting and decreased exercise endurance. Our previous study demonstrated that indoxyl sulfate (IS), a uremic toxin, accelerates skeletal muscle atrophy. The purpose of this study was to examine the issue of whether IS causes mitochondria dysfunction and IS-targeted intervention using AST-120, which inhibits IS accumulation, or mitochondria-targeted intervention using L-carnitine or teneligliptin, a dipeptidyl peptidase-4 inhibitor which retains mitochondria function and alleviates skeletal muscle atrophy and muscle endurance in chronic kidney disease mice. METHODS: The in vitro effect of IS on mitochondrial status was evaluated using mouse myofibroblast cells (C2C12 cell). The mice were divided into sham or 5/6-nephrectomized (CKD) mice group. Chronic kidney disease mice were also randomly assigned to non-treatment group and AST-120, L-carnitine, or teneligliptin treatment groups. RESULTS: In C2C12 cells, IS induced mitochondrial dysfunction by decreasing the expression of PGC-1α and inducing autophagy in addition to decreasing mitochondrial membrane potential. Co-incubation with an anti-oxidant, ascorbic acid, L-carnitine, or teneligliptine restored the values to their original state. In CKD mice, the body and skeletal muscle weights were decreased compared with sham mice. Compared with sham mice, the expression of interleukin-6 and atrophy-related factors such as myostatin and atrogin-1 was increased in the skeletal muscle of CKD mice, whereas muscular Akt phosphorylation was decreased. In addition, a reduced exercise capacity was observed for the CKD mice, which was accompanied by a decreased expression of muscular PCG-1α and increased muscular autophagy, as reflected by decreased mitochondria-rich type I fibres. An AST-120 treatment significantly restored these changes including skeletal muscle weight observed in CKD mice to the sham levels accompanied by a reduction in IS levels. An L-carnitine or teneligliptin treatment also restored them to the sham levels without changing IS level. CONCLUSIONS: Our results indicate that IS induces mitochondrial dysfunction in skeletal muscle cells and provides a potential therapeutic strategy such as IS-targeted and mitochondria-targeted interventions for treating CKD-induced muscle atrophy and decreased exercise endurance.


Assuntos
Indicã/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/etiologia , Animais , Antioxidantes/metabolismo , Biomarcadores , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Creatinina/sangue , Creatinina/urina , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Indicã/farmacologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Nitrogênio/sangue , Nitrogênio/urina , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcopenia/metabolismo
19.
Kidney Int ; 91(3): 658-670, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27988213

RESUMO

Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Hiperparatireoidismo Secundário/sangue , Hiperuricemia/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Proteínas de Neoplasias/metabolismo , Hormônio Paratireóideo/sangue , Ácido Úrico/sangue , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Células CACO-2 , Calcimiméticos/uso terapêutico , Cinacalcete/uso terapêutico , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/etiologia , Hiperuricemia/sangue , Hiperuricemia/etiologia , Hiperuricemia/prevenção & controle , Eliminação Intestinal , Intestinos/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Proteínas de Neoplasias/genética , Hormônio Paratireóideo/farmacologia , Ratos Sprague-Dawley , Eliminação Renal , Fatores de Tempo , Uremia/sangue , Uremia/complicações
20.
Sci Rep ; 5: 14471, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412311

RESUMO

Rhabdomyolysis-associated acute kidney injury (AKI) is a serious life-threatening condition. As such, more effective strategies are needed for its prevention. Thioredoxin-1 (Trx), a redox-active and macrophage migration inhibitory factor (MIF) modulating protein, has a short retention time in the blood. We examined the renoprotective effect of long acting Trx that was genetically fused with human serum albumin (HSA-Trx) against glycerol-induced AKI. An intravenous HSA-Trx pre-treatment attenuated the glycerol-induced decline in renal function, compared to a PBS, HSA or Trx alone. HSA-Trx caused a reduction in the tubular injuries and in the number of apoptosis-positive tubular cells. Renal superoxide, 8-hydroxy deoxyguanosine, nitrotyrosine and the plasma Cys34-cysteinylated albumin were clearly suppressed by the HSA-Trx treatment. Prior to decreasing TNF-α and IL-6, HSA-Trx suppressed an increase of plasma MIF level. In LLC-PK1 cells, HSA-Trx decreased the level of reactive oxygen species and lactate dehydrogenase release induced by myoglobin. HSA-Trx treatment resulted in a threefold increase in the survival of lethal glycerol-treated mice. The post-administration of HSA-Trx at 1 and 3 hr after glycerol injection exerted a significant renoprotective effect. These results suggest HSA-Trx has potential for use in the treatment of rhabdomyolysis-associated AKI via its extended effects of modulating oxidative stress and MIF.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Rabdomiólise/complicações , Tiorredoxinas/farmacologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Glicerol/efeitos adversos , Mediadores da Inflamação/metabolismo , Testes de Função Renal , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Fatores Inibidores da Migração de Macrófagos/sangue , Camundongos , Mioglobina/metabolismo , Mioglobina/toxicidade , Oxirredução , Substâncias Protetoras/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA