Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 365(22)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203018

RESUMO

Dipeptidyl peptidase (DPP) 4, DPP5, DPP7 and DPP11, expressed in the periplasmic space, are crucial for energy production for Porphyromonas gingivalis, an asaccharolytic bacterium that causes periodontal disease. Bacterial DPP4 seems to be involved in regulation of blood glucose level via degradation of incretins. The present study aimed to identify four dpp orthologs in oral microbiota by database searches, and their enzymatic activities in periodontopathic and cariogenic bacteria, as well as oral specimens were determined. Search in the databases suggested that 43 species of 772 taxa possess dpp4 and other dpp genes. Most species are in the genera Bacteroides, Capnocytophaga, Porphyromonas, Prevotella and Tannerella, indicating a limited distribution of dpp orthologs in anaerobic periodontopathic rods. In accordance with those results, activities of all four DPPs were demonstrated in P. gingivalis, Porphyromonas endodontalis and Tannerella forsythia, while they were negligible in Treponema denticola, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. Furthermore, DPP activities were also detected in subgingival dental plaque at different intensities among individual specimens, while DPP4 activity presumably derived from human entity was solely predominant in saliva samples. These findings demonstrated that DPP activities in dental plaque serve as potent biomarkers to indicate the presence of periodontopathic bacteria.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Placa Dentária/microbiologia , Dipeptidil Peptidase 4/metabolismo , Microbiota/genética , Porphyromonas gingivalis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Dipeptidil Peptidase 4/genética , Humanos , Incretinas/metabolismo , Boca/microbiologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/isolamento & purificação
2.
Biochimie ; 147: 25-35, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29080830

RESUMO

Peptidase family S46 consists of two types of dipeptidyl-peptidases (DPPs), DPP7 and DPP11, which liberate dipeptides from the N-termini of polypeptides along with the penultimate hydrophobic and acidic residues, respectively. Their specificities are primarily defined by a single amino acid residue, Gly673 in DPP7 and Arg673 in DPP11 (numbering for Porphyromonas gingivalis DPP11). Bacterial species in the phyla Proteobacteria and Bacteroidetes generally possess one gene for each, while Bacteroides species exceptionally possess three genes, one gene as DPP7 and two genes as DPP11, annotated based on the full-length similarities. In the present study, we aimed to characterize the above-mentioned Bacteroides S46 DPPs. A recombinant protein of the putative DPP11 gene BF9343_2924 from Bacteroides fragilis harboring Gly673 exhibited DPP7 activity by hydrolyzing Leu-Leu-4-methylcoumaryl-7-amide (MCA). Another gene, BF9343_2925, as well as the Bacteroides vulgatus gene (BVU_2252) with Arg673 was confirmed to encode DPP11. These results demonstrated that classification of S46 peptidase is enforceable by the S1 essential residues. Bacteroides DPP11 showed a decreased level of activity towards the substrates, especially with P1-position Glu. Findings of 3D structural modeling indicated three potential amino acid substitutions responsible for the reduction, one of which, Asn650Thr substitution, actually recovered the hydrolyzing activity of Leu-Glu-MCA. On the other hand, the gene currently annotated as DPP7 carrying Gly673 from B. fragilis (BF9343_0130) and Bacteroides ovatus (Bovatus_03382) did not hydrolyze any of the examined substrates. The existence of a phylogenic branch of these putative Bacteroides DPP7 genes classified by the C-terminal conserved region (Ser571-Leu700) strongly suggests that Bacteroides species expresses a DPP with an unknown property. In conclusion, the genus Bacteroides exceptionally expresses three S46-family members; authentic DPP7, a new subtype of DPP11 with substantially reduced specificity for Glu, and a third group of S46 family members.


Assuntos
Bacteroides/enzimologia , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Sequência de Aminoácidos , Hidrólise , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA