Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Otolaryngol Head Neck Surg ; 166(4): 734-737, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34154485

RESUMO

Understanding genetic causes of hearing loss can determine the pattern and course of a patient's hearing loss and may also predict outcomes after cochlear implantation. Our goal in this study was to evaluate genetic causes of hearing loss in a large cohort of adults and children with cochlear implants. We performed comprehensive genetic testing on all patients undergoing cochlear implantation. Of the 459 patients included in the study, 128 (28%) had positive genetic testing. In total, 44 genes were identified as causative. The top 5 genes implicated were GJB2 (20, 16%), TMPRSS3 (13, 10%), SLC26A4 (10, 8%), MYO7A (9, 7%), and MT-RNR1 (7, 5%). Pediatric patients had a higher diagnostic rate. This study lays the groundwork for future studies evaluating the relationship between genetic variation and cochlear implant performance.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Adulto , Criança , Estudos de Coortes , Surdez/genética , Perda Auditiva/genética , Perda Auditiva/cirurgia , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias , Serina Endopeptidases/genética
2.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34042254

RESUMO

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Assuntos
Anodontia/diagnóstico , Anodontia/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Variação Genética , Fenótipo , Proteínas/genética , Alelos , Substituição de Aminoácidos , Estudos de Coortes , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Mutação , Linhagem , Radiografia
3.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398081

RESUMO

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Assuntos
Frequência do Gene , Perda Auditiva/genética , Miosinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genes Recessivos , Perda Auditiva/etnologia , Perda Auditiva/patologia , Humanos , Lactente , Judeus/genética , Masculino , Mutação , Linhagem , Splicing de RNA
4.
Nephrol Dial Transplant ; 36(2): 295-305, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-31738409

RESUMO

BACKGROUND: The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients. METHODS: We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing. RESULTS: The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de'Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion-deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis. CONCLUSION: Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.


Assuntos
Biomarcadores/sangue , Variações do Número de Cópias de DNA , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nefropatias/diagnóstico , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Nefropatias/sangue , Nefropatias/genética , Nefropatias/terapia , Masculino , Pessoa de Meia-Idade , Fenótipo , Reprodutibilidade dos Testes , Adulto Jovem
5.
Hum Mutat ; 39(3): 433-440, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266521

RESUMO

Dysregulation of splicing is a common factor underlying many inherited diseases including deafness. For one deafness-associated gene, DFNA5, perturbation of exon 8 splicing results in a constitutively active truncated protein. To date, only intronic mutations have been reported to cause exon 8 skipping in patients with DFNA5-related deafness. In five families with postlingual progressive autosomal dominant non-syndromic hearing loss, we employed two next-generation sequencing platforms-OtoSCOPE and whole exome sequencing-followed by variant filtering and prioritization based on both minor allele frequency and functional consequence using a customized bioinformatics pipeline to identify three novel and two recurrent mutations in DFNA5 that segregated with hearing loss in these families. The three novel mutations are all missense variants within exon 8 that are predicted computationally to decrease splicing efficiency or abolish it completely. We confirmed their functional impact in vitro using mini-genes carrying each mutant DFNA5 exon 8. In so doing, we present the first exonic mutations in DFNA5 to cause deafness, expand the mutational spectrum of DFNA5-related hearing loss, and highlight the importance of assessing the effect of coding variants on splicing.


Assuntos
Éxons/genética , Mutação/genética , Receptores de Estrogênio/genética , Família , Feminino , Humanos , Masculino , Linhagem , Splicing de RNA
6.
Hum Genet ; 132(12): 1339-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23851940

RESUMO

Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial arch anomalies, hearing loss and renal dysmorphology. Although haploinsufficiency of EYA1 and SIX1 are known to cause BOR, copy number variation analysis has only been performed on a limited number of BOR patients. In this study, we used high-resolution array-based comparative genomic hybridization on 32 BOR probands negative for coding-sequence and splice-site mutations in known BOR-causing genes to identify potential disease-causing genomic rearrangements. Of the >1,000 rare and novel copy number variants we identified, four were heterozygous deletions of EYA1 and several downstream genes that had nearly identical breakpoints associated with retroviral sequence blocks, suggesting that non-allelic homologous recombination seeded by this recombination hotspot is important in the pathogenesis of BOR. A different heterozygous deletion removing the last exon of EYA1 was identified in an additional proband. Thus, in total five probands (14 %) had deletions of all or part of EYA1. Using a novel disease-gene prioritization strategy that includes network analysis of genes associated with other deletions suggests that SHARPIN (Sipl1), FGF3 and the HOXA gene cluster may contribute to the pathogenesis of BOR.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/métodos , Estudos de Associação Genética , Recombinação Genética/genética , Estudos de Coortes , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , Fator 3 de Crescimento de Fibroblastos/genética , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Família Multigênica , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Ubiquitinas/genética
7.
Clin J Am Soc Nephrol ; 7(2): 265-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22223606

RESUMO

BACKGROUND AND OBJECTIVES: This study was designed to investigate the causes of alternative pathway dysregulation in a cohort of patients with dense deposit disease (DDD). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Thirty-two patients with biopsy-proven DDD underwent screening for C3 nephritic factors (C3Nefs), factor H autoantibodies (FHAAs), factor B autoantibodies (FBAAs), and genetic variants in CFH. C3Nefs were detected by: ELISA, C3 convertase surface assay (C3CSA), C3CSA with properdin (C3CSAP), two-dimensional immunoelectrophoresis (2DIEP), and immunofixation electrophoresis (IFE). FHAAs and FBAAs were detected by ELISA, and CFH variants were identified by Sanger sequencing. RESULTS: Twenty-five patients (78%) were positive for C3Nefs. Three C3Nef-positive patients were also positive for FBAAs and one of these patients additionally carried two novel missense variants in CFH. Of the seven C3Nef-negative patients, one patient was positive for FHAAs and two patients carried CFH variants that may be causally related to their DDD phenotype. C3CASP was the most sensitive C3Nef-detection assay. C3CASP and IFE are complementary because C3CSAP measures the stabilizing properties of C3Nefs, whereas IFE measures their expected consequence-breakdown of C3b. CONCLUSIONS: A test panel that includes C3CSAP, IFE, FHAAs, FBAAs, and genetic testing for CFH variants will identify a probable cause for alternative pathway dysregulation in approximately 90% of DDD patients. Dysregulation is most frequently due to C3Nefs, although some patients test positive for FHAAs, FBAAs, and CFH mutations. Defining the pathophysiology of DDD should facilitate the development of mechanism-directed therapies.


Assuntos
Via Alternativa do Complemento , Glomerulonefrite Membranoproliferativa/imunologia , Rim/imunologia , Adolescente , Adulto , Animais , Autoanticorpos/sangue , Biomarcadores/sangue , Biópsia , Criança , Fator Nefrítico do Complemento 3/análise , Convertases de Complemento C3-C5/imunologia , Fator B do Complemento/imunologia , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Análise Mutacional de DNA , Ensaio de Imunoadsorção Enzimática , Eritrócitos/imunologia , Feminino , Genótipo , Glomerulonefrite Membranoproliferativa/sangue , Glomerulonefrite Membranoproliferativa/diagnóstico , Glomerulonefrite Membranoproliferativa/genética , Humanos , Imunoeletroforese Bidimensional , Iowa , Estimativa de Kaplan-Meier , Rim/patologia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Fenótipo , Prognóstico , Properdina/imunologia , Ovinos , Fatores de Tempo , Adulto Jovem
8.
J Am Soc Nephrol ; 22(8): 1551-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21784901

RESUMO

The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies.


Assuntos
Alelos , Proteínas do Sistema Complemento/genética , Variação Genética , Glomerulonefrite Membranoproliferativa/genética , Adolescente , Adulto , Biópsia , Ativação do Complemento/genética , Complemento C3/genética , Feminino , Glomerulonefrite Membranoproliferativa/etiologia , Humanos , Masculino , Mutação , Polimorfismo Genético , Risco
9.
Am J Med Genet A ; 143A(21): 2564-75, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17935254

RESUMO

X-linked syndromes associated with developmental delay and sensorineural hearing loss (SNHL) have been characterized at the molecular level, including Mohr-Tranebjaerg syndrome and Norrie disease. In this study we report on a novel X-linked recessive, congenital syndrome in a family with developmental delay and SNHL that maps to a locus associated with mental retardation (MR) for which no causative gene has been identified. The X-linked recessive inheritance and congenital nature of the syndrome was confirmed by detailed clinical investigation and the family history. Linkage mapping of the X-chromosome was conducted to ascertain the disease locus and candidate genes were screened by direct sequencing and STRP analysis. The recessive syndrome was mapped to Xp11.3-q21.32 and a deletion was identified in a regulatory region upstream of the POU3F4 gene in affected family members. Since mutations in POU3F4 cause deafness at the DFN3 locus, the deletion is the likely cause of the SNHL in this family. The choroideremia (CHM) gene was also screened and a novel missense change was identified. The alteration changes the serine residue at position 89 in the Rab escort 1 protein (REP-1) to a cysteine (S89C). Prenylation of Rab proteins was investigated in patients and the location of REP-1 expression in the brain determined. However, subsequent analysis revealed that this change in CHM was polymorphic having no effect on REP-1 function. Although the causative gene at the MR locus in this family has not been identified, there are a number of genes involved in syndromic and nonsyndromic forms of MR that are potential candidates.


Assuntos
Cromossomos Humanos X/genética , Deficiências do Desenvolvimento/genética , Genes Recessivos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Perda Auditiva Neurossensorial/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores do Domínio POU/genética , Linhagem , Prenilação de Proteína/genética
10.
Hum Genet ; 122(5): 451-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17690912

RESUMO

Pendred syndrome (PS) and non-syndromic enlarged vestibular aqueduct (EVA) are two recessive disorders characterized by the association of sensorineural hearing loss (SNHL) with inner ear malformations that range from isolated EVA to Mondini Dysplasia, a complex malformation that includes a cochlear dysplasia and EVA. Mutations in the SLC26A4 gene, coding for the protein pendrin, have been implicated in the pathophysiology of both disorders. In order to determine whether SLC26A4 genotypes can be correlated to the complexity and severity of the phenotypes, we ascertained 1,506 deaf patients. Inner ear abnormalities were present in 474 patients (32%). Mutation screening of SLC26A4 detected two mutations in 16% of patients, one mutation in 19% of patients and zero mutation in 65% of patients. When the distribution of SLC26A4 genotypes was compared across phenotypes, a statistically significant difference was found between PS patients and non-syndromic EVA-Mondini patients (P = 0.005), as well as between EVA patients and Mondini patients (P = 0.0003). There was a correlation between phenotypic complexity of inner ear malformations and genetic heterogeneity--PS patients have the most severe phenotype and the most homogeneous etiology while EVA patients have the least severe phenotype and the most heterogeneous etiology. For all patients, variability in the degree of hearing loss is seen across genotypes implicating other genetic and/or environmental factors in the pathogenesis of the PS-Mondini-EVA disease spectrum.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Cóclea/anormalidades , Feminino , Genes Recessivos , Genótipo , Bócio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Transportadores de Sulfato , Síndrome , Aqueduto Vestibular/anormalidades
11.
Arch Otolaryngol Head Neck Surg ; 133(2): 162-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17309986

RESUMO

OBJECTIVE: To correlate genetic and audiometric findings with a detailed radiologic analysis of the temporal bone in patients with enlarged vestibular aqueduct (EVA) to ascertain the contribution of SLC26A4 gene mutations to this phenotype. DESIGN: A retrospective review of patients with EVA identified in a database of pediatric hearing-impaired patients. SETTING: A tertiary care pediatric referral center. PATIENTS: Seventy-one children with EVA and screening results for SLC26A4 mutations. MAIN OUTCOME MEASURES: Genetic screening results, audiometric thresholds, and radiographic temporal bone measurements. RESULTS: Seventy-one children with EVA were screened for SLC26A4 mutations. Mutations were found in 27% of children overall, while only 8% had biallelic mutations. The mean initial pure-tone average (PTA) was 59 dB; the mean final PTA was 67 dB. A bilateral EVA was found in 48 (67%) of the children; a unilateral EVA was found in 23 (33%). Progressive hearing loss (in at least 1 ear) was seen in 29 (41%) of the patients. The strongest genotype-phenotype interaction was seen in children with a bilateral EVA. Among children with SLC26A4 mutations, there was a significantly wider vestibular aqueduct at the midpoint and a wider vestibule width (P < .05) than in children without the mutation. Among patients with a bilateral EVA, children with any SLC26A4 mutation were more likely to have a more severe final PTA (64 dB vs 32 dB), larger midpoint measurement (2.1 vs 1.1 mm), and larger operculum measurement (3.0 vs 2.0 mm) than those without the mutation in their better-hearing ear (P < .05). CONCLUSIONS: In a population of pediatric patients with an EVA and hearing loss, SLC26A4 mutations are a contributor to the phenotype. Our data suggest that other genetic factors also have important contributions to this phenotype. The presence of an abnormal SLC26A4 allele, even in the heterozygous state, was associated with greater enlargement of the vestibular aqueduct, abnormal development of the vestibule, and possibly a stable hearing outcome.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Osso Temporal/anormalidades , Aqueduto Vestibular/anormalidades , Adolescente , Adulto , Audiometria de Tons Puros , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Transportadores de Sulfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA