Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Immunol ; 13: 880887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634278

RESUMO

Macrophages are paracrine signalers that regulate tissular responses to injury through interactions with parenchymal cells. Connexin hemichannels have recently been shown to mediate efflux of ATP by macrophages, with resulting cytosolic calcium responses in adjacent cells. Here we report that lung macrophages with deletion of connexin 43 (MacΔCx43) had decreased ATP efflux into the extracellular space and induced a decreased cytosolic calcium response in co-cultured fibroblasts compared to WT macrophages. Furthermore, MacΔCx43 mice had decreased lung fibrosis after bleomycin-induced injury. Interrogating single cell data for human and mouse, we found that P2rx4 was the most highly expressed ATP receptor and calcium channel in lung fibroblasts and that its expression was increased in the setting of fibrosis. Fibroblast-specific deletion of P2rx4 in mice decreased lung fibrosis and collagen expression in lung fibroblasts in the bleomycin model. Taken together, these studies reveal a Cx43-dependent profibrotic effect of lung macrophages and support development of fibroblast P2rx4 as a therapeutic target for lung fibrosis.


Assuntos
Conexina 43 , Fibrose Pulmonar Idiopática , Trifosfato de Adenosina/metabolismo , Animais , Bleomicina/farmacologia , Cálcio/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout
2.
Elife ; 102021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151776

RESUMO

Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140-/- mice and found that they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140-/- mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar-/-). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.


Assuntos
Infecções Bacterianas/imunologia , Interferon Tipo I/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon Tipo I/genética , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mycobacterium tuberculosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Organismos Livres de Patógenos Específicos , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/farmacologia
3.
Sci Immunol ; 6(57)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771888

RESUMO

Regulatory T cells (Tregs) that promote tumor immune evasion are enriched in certain tumors and correlate with poor prognosis. However, mechanisms for Treg enrichment remain incompletely understood. We described a mechanism for Treg enrichment in mouse and human tumors mediated by the αvß8 integrin. Tumor cell αvß8 bound to latent transforming growth factor-ß (L-TGF-ß) presented on the surface of T cells, resulting in TGF-ß activation and immunosuppressive Treg differentiation in vitro. In vivo, tumor cell αvß8 expression correlated with Treg enrichment, immunosuppressive Treg gene expression, and increased tumor growth, which was reduced in mice by αvß8 inhibition or Treg depletion. Structural modeling and cell-based studies suggested a highly geometrically constrained complex forming between αvß8-expressing tumor cells and L-TGF-ß-expressing T cells, facilitating TGF-ß activation, independent of release and diffusion, and providing limited access to TGF-ß inhibitors. These findings suggest a highly localized tumor-specific mechanism for Treg enrichment.


Assuntos
Integrinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Evasão Tumoral , Animais , Biomarcadores , Linhagem Celular Tumoral , Biologia Computacional/métodos , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma
4.
Circulation ; 143(9): 935-948, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307764

RESUMO

BACKGROUND: In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS: Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and ß3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS: Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on ß3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the ß leg. ß3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between ß3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect ß3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS: Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.


Assuntos
Cadeias beta de Integrinas/química , Compostos de Sulfidrila/química , Animais , Cromatografia Líquida de Alta Pressão , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cisteína/química , Dissulfetos/análise , Dissulfetos/química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Sulfeto de Hidrogênio/farmacologia , Cadeias beta de Integrinas/metabolismo , Mecanotransdução Celular , Camundongos , Resistência ao Cisalhamento , Espectrometria de Massas em Tandem , Vasodilatação/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Cell ; 180(3): 490-501.e16, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31955848

RESUMO

Integrin αvß8 binds with exquisite specificity to latent transforming growth factor-ß (L-TGF-ß). This binding is essential for activating L-TGF-ß presented by a variety of cell types. Inhibiting αvß8-mediated TGF-ß activation blocks immunosuppressive regulatory T cell differentiation, which is a potential therapeutic strategy in cancer. Using cryo-electron microscopy, structure-guided mutagenesis, and cell-based assays, we reveal the binding interactions between the entire αvß8 ectodomain and its intact natural ligand, L-TGF-ß, as well as two different inhibitory antibody fragments to understand the structural underpinnings of αvß8 binding specificity and TGF-ß activation. Our studies reveal a mechanism of TGF-ß activation where mature TGF-ß signals within the confines of L-TGF-ß and the release and diffusion of TGF-ß are not required. The structural details of this mechanism provide a rational basis for therapeutic strategies to inhibit αvß8-mediated L-TGF-ß activation.


Assuntos
Microscopia Crioeletrônica/métodos , Integrinas/química , Integrinas/metabolismo , Proteínas de Ligação a TGF-beta Latente/química , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fator de Crescimento Transformador beta1/química , Fator de Crescimento Transformador beta1/metabolismo , Animais , Anticorpos/imunologia , Sítios de Ligação , Brônquios/citologia , Células CHO , Cricetulus , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Integrinas/imunologia , Ativação Linfocitária , Masculino , Vison , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Linfócitos T Reguladores/imunologia
6.
Autophagy ; 15(3): 510-526, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30290714

RESUMO

Cigarette smoke (CS)-induced accumulation of mitochondrial damage has been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Mitophagy plays a crucial role in eliminating damaged mitochondria, and is governed by the PINK1 (PTEN induced putative protein kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase) pathway. Although both increased PINK1 and reduced PRKN have been implicated in COPD pathogenesis in association with mitophagy, there are conflicting reports for the role of mitophagy in COPD progression. To clarify the involvement of PRKN-regulated mitophagy in COPD pathogenesis, prkn knockout (KO) mouse models were used. To illuminate how PINK1 and PRKN regulate mitophagy in relation to CS-induced mitochondrial damage and cellular senescence, overexpression and knockdown experiments were performed in airway epithelial cells (AEC). In comparison to wild-type mice, prkn KO mice demonstrated enhanced airway wall thickening with emphysematous changes following CS exposure. AEC in CS-exposed prkn KO mice showed accumulation of damaged mitochondria and increased oxidative modifications accompanied by accelerated cellular senescence. In vitro experiments showed PRKN overexpression was sufficient to induce mitophagy during CSE exposure even in the setting of reduced PINK1 protein levels, resulting in attenuation of mitochondrial ROS production and cellular senescence. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, indicating that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy during CSE exposure. These results suggest that PRKN levels may play a pivotal role in COPD pathogenesis by regulating mitophagy, suggesting that PRKN induction could mitigate the progression of COPD. Abbreviations: AD: Alzheimer disease; AEC: airway epithelial cells; BALF: bronchoalveolar lavage fluid; AKT: AKT serine/threonine kinase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; COPD: chronic obstructive pulmonary disease; CS: cigarette smoke; CSE: CS extract; CXCL1: C-X-C motif chemokine ligand 1; CXCL8: C-X-C motif chemokine ligand 8; HBEC: human bronchial epithelial cells; 4-HNE: 4-hydroxynonenal; IL: interleukin; KO: knockout; LF: lung fibroblasts; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PCD: programmed cell death; PFD: pirfenidone; PIK3C: phosphatidylinositol-4:5-bisphosphate 3-kinase catalytic subunit; PINK1: PTEN induced putative kinase 1; PTEN: phosphatase and tensin homolog; RA: rheumatoid arthritis; ROS: reactive oxygen species; SA-GLB1/ß-Gal: senescence-associated-galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SNP: single nucleotide polymorphism; TNF: tumor necrosis factor.


Assuntos
Senescência Celular , Mitocôndrias/metabolismo , Mitofagia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Humanos , Pulmão/patologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333313

RESUMO

TGF-ß is a promising immunotherapeutic target. It is expressed ubiquitously in a latent form that must be activated to function. Determination of where and how latent TGF-ß (L-TGF-ß) is activated in the tumor microenvironment could facilitate cell- and mechanism-specific approaches to immunotherapeutically target TGF-ß. Binding of L-TGF-ß to integrin αvß8 results in activation of TGF-ß. We engineered and used αvß8 antibodies optimized for blocking or detection, which - respectively - inhibit tumor growth in syngeneic tumor models or sensitively and specifically detect ß8 in human tumors. Inhibition of αvß8 potentiates cytotoxic T cell responses and recruitment of immune cells to tumor centers - effects that are independent of PD-1/PD-L1. ß8 is expressed on the cell surface at high levels by tumor cells, not immune cells, while the reverse is true of L-TGF-ß, suggesting that tumor cell αvß8 serves as a platform for activating cell-surface L-TGF-ß presented by immune cells. Transcriptome analysis of tumor-associated lymphoid cells reveals macrophages as a key cell type responsive to ß8 inhibition with major increases in chemokine and tumor-eliminating genes. High ß8 expression in tumor cells is seen in 20%-80% of various cancers, which rarely coincides with high PD-L1 expression. These data suggest tumor cell αvß8 is a PD-1/PD-L1-independent immunotherapeutic target.


Assuntos
Integrinas/metabolismo , Macrófagos/imunologia , Neoplasias/imunologia , Fator de Crescimento Transformador beta/metabolismo , Evasão Tumoral/imunologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Modelos Animais de Doenças , Feminino , Humanos , Integrinas/antagonistas & inibidores , Estimativa de Kaplan-Meier , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
8.
Am J Physiol Lung Cell Mol Physiol ; 315(1): L25-L40, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29543040

RESUMO

Evidence is accumulating that exposure to cigarette smoke (CS) increases the risk of developing acute respiratory distress syndrome (ARDS). Streptococcus pneumoniae is the most common cause of bacterial pneumonia, which in turn is the leading cause of ARDS. Chronic smokers have increased rates of pneumococcal colonization and develop more severe pneumococcal pneumonia than nonsmokers; yet mechanistic connections between CS exposure, bacterial pneumonia, and ARDS pathogenesis remain relatively unexplored. We exposed mice to 3 wk of moderate whole body CS or air, followed by intranasal inoculation with an invasive serotype of S. pneumoniae. CS exposure alone caused no detectable lung injury or bronchoalveolar lavage (BAL) inflammation. During pneumococcal infection, CS-exposed mice had greater survival than air-exposed mice, in association with reduced systemic spread of bacteria from the lungs. However, when mice were treated with antibiotics after infection to improve clinical relevance, the survival benefit was lost, and CS-exposed mice had more pulmonary edema, increased numbers of BAL monocytes, and elevated monocyte and lymphocyte chemokines. CS-exposed antibiotic-treated mice also had higher serum surfactant protein D and angiopoietin-2, consistent with more severe lung epithelial and endothelial injury. The results indicate that acute CS exposure enhances the recruitment of immune cells to the lung during bacterial pneumonia, an effect that may provide microbiological benefit but simultaneously exposes the mice to more severe inflammatory lung injury. The inclusion of antibiotic treatment in preclinical studies of acute lung injury in bacterial pneumonia may enhance clinical relevance, particularly for future studies of current or emerging tobacco products.


Assuntos
Lesão Pulmonar Aguda , Antibacterianos/farmacologia , Pneumonia Bacteriana , Pneumonia Pneumocócica , Streptococcus pneumoniae/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Feminino , Camundongos , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia
9.
Sci Transl Med ; 10(433)2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563320

RESUMO

Depending on age of acquisition, hepatitis B virus (HBV) can induce a cell-mediated immune response that results in either cure or progressive liver injury. In adult-acquired infection, HBV antigens are usually cleared, whereas in infancy-acquired infection, they persist. Individuals infected during infancy therefore represent the majority of patients chronically infected with HBV (CHB). A therapy that can promote viral antigen clearance in most CHB patients has not been developed and would represent a major health care advance and cost mitigator. Using an age-dependent mouse model of HBV clearance and persistence in conjunction with human blood and liver tissue, we studied mechanisms of viral clearance to identify new therapeutic targets. We demonstrate that age-dependent expression of the costimulatory molecule OX40 ligand (OX40L) by hepatic innate immune cells is pivotal in determining HBV immunity, and that treatment with OX40 agonists leads to improved HBV antigen clearance in young mice, as well as increased strength of T cell responses in young mice and adult mice that were exposed to HBV when they were young and developed a CHB serological profile. Similarly, in humans, we show that hepatic OX40L transcript expression is age-dependent and that increased OX40 expression on peripheral CD4+ T cells in adults is associated with HBV clearance. These findings provide new mechanistic understanding of the immune pathways and cells necessary for HBV immunity and identify potential therapeutic targets for resolving CHB.


Assuntos
Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/imunologia , Hepatite B Crônica/metabolismo , Imunidade Inata/fisiologia , Ligante OX40/metabolismo , Receptores OX40/metabolismo , Animais , Imunidade Inata/genética , Camundongos , Camundongos Knockout
10.
Proc Natl Acad Sci U S A ; 114(47): E10161-E10168, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109269

RESUMO

Human regulatory T cells (Tregs) suppress other T cells by converting the latent, inactive form of TGF-ß1 into active TGF-ß1. In Tregs, TGF-ß1 activation requires GARP, a transmembrane protein that binds and presents latent TGF-ß1 on the surface of Tregs stimulated through their T cell receptor. However, GARP is not sufficient because transduction of GARP in non-Treg T cells does not induce active TGF-ß1 production. RGD-binding integrins were shown to activate TGF-ß1 in several non-T cell types. Here we show that αVß8 dimers are present on stimulated human Tregs but not in other T cells, and that antibodies against αV or ß8 subunits block TGF-ß1 activation in vitro. We also show that αV and ß8 interact with GARP/latent TGF-ß1 complexes in human Tregs. Finally, a blocking antibody against ß8 inhibited immunosuppression by human Tregs in a model of xenogeneic graft-vs.-host disease induced by the transfer of human T cells in immunodeficient mice. These results show that TGF-ß1 activation on the surface of human Tregs implies an interaction between the integrin αVß8 and GARP/latent TGF-ß1 complexes. Immunosuppression by human Tregs can be inhibited by antibodies against GARP or against the integrin ß8 subunit. Such antibodies may prove beneficial against cancer or chronic infections.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Tolerância Imunológica/efeitos dos fármacos , Integrinas/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Humanos , Integrinas/antagonistas & inibidores , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta1/metabolismo , Transplante Heterólogo
11.
Nicotine Tob Res ; 19(9): 1033-1039, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340238

RESUMO

INTRODUCTION: Cigarette smoking (CS) remains a major public health concern and has recently been associated with an increased risk of developing acute respiratory distress syndrome (ARDS). Bronchoalveolar lavage (BAL) experiments in human volunteers have demonstrated that active smokers develop increased alveolar-epithelial barrier permeability to protein after inhaling lipopolysaccharide (LPS). Here we tested the hypothesis that short-term whole-body CS exposure would increase LPS-induced lung edema in mice. METHODS: Adult mice were exposed in a Teague TE-10 machine to CS from 3R4F cigarettes at 100 mg/m3 total suspended particulates for 12 days, then given LPS or saline intratracheally. Control mice were housed in the same room without CS exposure. Post-mortem measurements included gravimetric lung water and BAL protein, cell counts, and lung histology. Cytokines were measured in lung homogenate by ELISA and in plasma by Luminex and ELISA. RESULTS: In CS-exposed mice, intratracheal LPS caused greater increases in pulmonary edema by gravimetric measurement and histologic scoring. CS-exposed mice also had an increase in BAL neutrophilia, lung IL-6, and plasma CXCL9, a T-cell chemoattractant. Intratracheal LPS concentrated blood hemoglobin to a greater degree in CS-exposed mice, consistent with an increase in systemic vascular permeability. CONCLUSIONS: These results demonstrate that CS exposure in endotoxin injured mice increases the severity of acute lung injury. The increased lung IL-6 in CS-exposed LPS-injured mice indicates that this potent cytokine, previously shown to predict mortality in patients with ARDS, may play a role in exacerbating lung injury in smokers and may have utility as a biomarker of tobacco-related lung injury. IMPLICATIONS: Our results suggest that short-term CS exposure at levels that cause no overt lung injury may still prime the lung for acute inflammatory damage from a "second hit", a finding that mirrors the increased risk of developing ARDS in patients who smoke. This model may be useful for evaluating the acute pulmonary toxicity of existing and/or novel tobacco products and identifying biomarkers of tobacco-related lung injury.


Assuntos
Lipopolissacarídeos/efeitos adversos , Lesão Pulmonar , Pulmão , Edema Pulmonar , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/imunologia , Lesão Pulmonar/fisiopatologia , Camundongos , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/imunologia , Edema Pulmonar/fisiopatologia , Síndrome do Desconforto Respiratório
12.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L122-L130, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913421

RESUMO

Small airway fibrosis is a major pathological feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Chronic inflammatory cells accumulate around small airways in COPD and are thought to play a major role in small airway fibrosis. Mice deficient in α/ß T cells have recently been shown to be protected from both experimental airway inflammation and fibrosis. In these models, CD4+Th17 cells and secretion of IL-17A are increased. However, a pathogenic role for IL-17 in specifically mediating fibrosis around airways has not been demonstrated. Here a role for IL-17A in airway fibrosis was demonstrated using mice deficient in the IL-17 receptor A (il17ra) Il17ra-deficient mice were protected from both airway inflammation and fibrosis in two different models of airway fibrosis that employ COPD-relevant stimuli. In these models, CD4+ Th17 are a major source of IL-17A with other expressing cell types including γδ T cells, type 3 innate lymphoid cells, polymorphonuclear cells, and CD8+ T cells. Antibody neutralization of IL-17RA or IL-17A confirmed that IL-17A was the relevant pathogenic IL-17 isoform and IL-17RA was the relevant receptor in airway inflammation and fibrosis. These results demonstrate that the IL-17A/IL-17 RA axis is crucial to murine airway fibrosis. These findings suggest that IL-17 might be targeted to prevent the progression of airway fibrosis in COPD.


Assuntos
Interleucina-17/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adenoviridae/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-1beta/farmacologia , Camundongos Endogâmicos C57BL , Testes de Neutralização , Pneumonia/complicações , Pneumonia/metabolismo , Pneumonia/patologia , Poli I-C/farmacologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Fibrose Pulmonar/complicações , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptores de Interleucina-17/metabolismo , Fumar/efeitos adversos
13.
Transl Stroke Res ; 7(6): 488-496, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27352867

RESUMO

Brain arteriovenous malformation (bAVM), characterized by tangled dysplastic vessels, is an important cause of intracranial hemorrhage in young adults, and its pathogenesis and progression are not fully understood. Patients with haploinsufficiency of transforming growth factor-ß (TGF-ß) receptors, activin receptor-like kinase 1 (ALK1) or endoglin (ENG) have a higher incidence of bAVM than the general population. However, bAVM does not develop effectively in mice with the same haploinsufficiency. The expression of integrin ß8 subunit (ITGB8), another member in the TGF-ß superfamily, is reduced in sporadic human bAVM. Brain angiogenic stimulation results at the capillary level of vascular malformation in adult Alk1 haploinsufficient (Alk1 +/- ) mice. We hypothesized that deletion of Itgb8 enhances bAVM development in adult Alk1 +/- mice. An adenoviral vector expressing Cre recombinase (Ad-Cre) was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brain of Alk1 +/-;Itgb8-floxed mice to induce focal Itgb8 gene deletion and angiogenesis. We showed that compared with Alk +/- mice (4.75 ± 1.38/mm2), the Alk1 +/-;Itgb8-deficient mice had more dysplastic vessels in the angiogenic foci (7.14 ± 0.68/mm2, P = 0.003). More severe hemorrhage was associated with dysplastic vessels in the brain of Itgb8-deleted Alk1 +/- , as evidenced by larger Prussian blue-positive areas (1278 ± 373 pixels/mm2 vs. Alk1 +/-  : 320 ± 104 pixels/mm2; P = 0.028). These data indicate that both Itgb8 and Alk1 are important in maintaining normal cerebral angiogenesis in response to VEGF. Itgb8 deficiency enhances the formation of dysplastic vessels and hemorrhage in Alk1 +/- mice.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Cadeias beta de Integrinas/metabolismo , Hemorragias Intracranianas/genética , Hemorragias Intracranianas/patologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cadeias beta de Integrinas/genética , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/etiologia , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Immunol ; 195(3): 1182-90, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26109638

RESUMO

Small airway chronic inflammation is a major pathologic feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Dendritic cells (DCs) accumulate around small airways in COPD. DCs are critical mediators of Ag surveillance and Ag presentation and amplify adaptive immune responses. How DCs accumulate around airways remains largely unknown. We use 2-photon DC imaging of living murine lung sections to directly visualize the dynamic movement of living DCs around airways in response to either soluble mediators (IL-1ß) or environmental stimuli (cigarette smoke or TLR3 ligands) implicated in COPD pathogenesis. We find that DCs accumulate around murine airways primarily by increasing velocity (chemokinesis) rather than directional migration (chemotaxis) in response to all three stimuli. DC accumulation maximally occurs in a specific zone located 26-50 µm from small airways, which overlaps with zones of maximal DC velocity. Our data suggest that increased accumulation of DCs around airways results from increased numbers of highly chemokinetic DCs entering the lung from the circulation with balanced rates of immigration and emigration. Increases in DC accumulation and chemokinesis are partially dependent on ccr6, a crucial DC chemokine receptor, and fibroblast expression of the integrin αvß8, a critical activator of TGF-ß. αvß8-Mediated TGF-ß activation is known to enhance IL-1ß-dependent fibroblast expression of the only known endogenous ccr6 chemokine ligand, ccl20. Taken together, these data suggest a mechanism by which αvß8, ccl20, and ccr6 interact to lead to DC accumulation around airways in response to COPD-relevant stimuli.


Assuntos
Células Dendríticas/imunologia , Integrinas/imunologia , Interleucina-1beta/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Fator de Crescimento Transformador beta/imunologia , Imunidade Adaptativa/imunologia , Animais , Movimento Celular/imunologia , Quimiocina CCL20/biossíntese , Quimiocina CCL20/imunologia , Modelos Animais de Doenças , Ativação Enzimática/imunologia , Fibroblastos/imunologia , Integrinas/biossíntese , Interleucina-1beta/biossíntese , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/farmacologia , Doença Pulmonar Obstrutiva Crônica/patologia , Radiografia , Receptores CCR6/genética , Receptores CCR6/imunologia , Fumaça/efeitos adversos , Receptor 3 Toll-Like , Fator de Crescimento Transformador beta/metabolismo
15.
J Immunol ; 194(8): 3962-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25786688

RESUMO

Chronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease and are refractory to current treatments. How and whether chronic inflammation contributes to airway fibrosis remain controversial. In this study, we use a model of chronic obstructive pulmonary disease airway disease utilizing adenoviral delivery of IL-1ß to determine that adaptive T cell immunity is required for airway remodeling because mice deficient in α/ß T cells (tcra(-/-)) are protected. Dendritic cells (DCs) accumulate around chronic obstructive pulmonary disease airways and are critical to prime adaptive immunity, but they have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor ccr6 both protect from adenoviral IL-1ß-induced airway adaptive T cell immune responses and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of α/ß T cells and driven by DCs, is critical to airway fibrosis.


Assuntos
Imunidade Adaptativa , Células Dendríticas/imunologia , Interleucina-1beta/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Fibrose Pulmonar/imunologia , Animais , Células Dendríticas/patologia , Interleucina-1beta/genética , Camundongos , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Fibrose Pulmonar/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
16.
Autophagy ; 11(3): 547-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714760

RESUMO

Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.


Assuntos
Senescência Celular , Células Epiteliais/patologia , Mitofagia , Proteínas Quinases/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ubiquitina-Proteína Ligases/fisiologia , Adulto , Idoso , Autofagia , Brônquios/citologia , Feminino , Humanos , Imuno-Histoquímica , Pulmão/fisiopatologia , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Mitocôndrias/patologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fumar/efeitos adversos , Produtos do Tabaco
17.
Sci Transl Med ; 6(241): 241ra79, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24944194

RESUMO

Airway remodeling, caused by inflammation and fibrosis, is a major component of chronic obstructive pulmonary disease (COPD) and currently has no effective treatment. Transforming growth factor-ß (TGF-ß) has been widely implicated in the pathogenesis of airway remodeling in COPD. TGF-ß is expressed in a latent form that requires activation. The integrin αvß8 (encoded by the itgb8 gene) is a receptor for latent TGF-ß and is essential for its activation. Expression of integrin αvß8 is increased in airway fibroblasts in COPD and thus is an attractive therapeutic target for the treatment of airway remodeling in COPD. We demonstrate that an engineered optimized antibody to human αvß8 (B5) inhibited TGF-ß activation in transgenic mice expressing only human and not mouse ITGB8. The B5 engineered antibody blocked fibroinflammatory responses induced by tobacco smoke, cytokines, and allergens by inhibiting TGF-ß activation. To clarify the mechanism of action of B5, we used hydrodynamic, mutational, and electron microscopic methods to demonstrate that αvß8 predominantly adopts a constitutively active, extended-closed headpiece conformation. Epitope mapping and functional characterization of B5 revealed an allosteric mechanism of action due to locking-in of a low-affinity αvß8 conformation. Collectively, these data demonstrate a new model for integrin function and present a strategy to selectively target the TGF-ß pathway to treat fibroinflammatory airway diseases.


Assuntos
Traqueíte/terapia , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos
18.
J Immunol ; 192(3): 958-68, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24367027

RESUMO

Cigarette smoke (CS)-induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated ß-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling.


Assuntos
Autofagia/fisiologia , Brônquios/patologia , Senescência Celular/fisiologia , Células Epiteliais/patologia , Fator de Crescimento Insulin-Like I/fisiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Sirtuínas/fisiologia , Fumaça/efeitos adversos , Acetilação , Proteína 5 Relacionada à Autofagia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Volume Expiratório Forçado , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/fisiologia , Mutação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética , Serina-Treonina Quinases TOR/fisiologia , Nicotiana , Capacidade Vital
19.
Am J Physiol Lung Cell Mol Physiol ; 304(1): L56-69, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23087019

RESUMO

Autophagy, a process that helps maintain homeostatic balance between the synthesis, degradation, and recycling of organelles and proteins to meet metabolic demands, plays an important regulatory role in cellular senescence and differentiation. Here we examine the regulatory role of autophagy in idiopathic pulmonary fibrosis (IPF) pathogenesis. We test the hypothesis that epithelial cell senescence and myofibroblast differentiation are consequences of insufficient autophagy. Using biochemical evaluation of in vitro models, we find that autophagy inhibition is sufficient to induce acceleration of epithelial cell senescence and myofibroblast differentiation in lung fibroblasts. Immunohistochemical evaluation of human IPF biospecimens reveals that epithelial cells show increased cellular senescence, and both overlaying epithelial cells and fibroblasts in fibroblastic foci (FF) express both ubiquitinated proteins and p62. These findings suggest that insufficient autophagy is an underlying mechanism of both accelerated cellular senescence and myofibroblast differentiation in a cell-type-specific manner and is a promising clue for understanding the pathogenesis of IPF.


Assuntos
Autofagia , Fibrose Pulmonar Idiopática/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Humanos , Miofibroblastos/citologia , Proteína Sequestossoma-1 , Tunicamicina/farmacologia , Ubiquitina/biossíntese
20.
J Biol Chem ; 286(42): 36864-74, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21878622

RESUMO

The integrin αvß8 is a cell surface receptor for the latent domain (LAP) of the multifunctional cytokine TGF-ß. Through its association with LAP, TGF-ß is maintained in a latent form that must be activated to function. Binding to the integrin αvß8 with subsequent metalloproteolytic cleavage of LAP represents a major mechanism of TGF-ß activation in vivo. Altered expression of the integrin ß8 subunit (ITGB8) is found in human chronic obstructive pulmonary disease, cancers, and brain vascular malformations. We have previously shown that the proinflammatory cytokine interleukin-1ß (IL-1ß) increases ITGB8 expression on lung fibroblasts, which increases αvß8-mediated TGF-ß activation in fibrosis and pathologic inflammation. Here we report the mechanism of increased ITGB8 expression by IL-1ß. Our data support a model where the chromatin architecture of the ITGB8 core promoter is altered by nucleosomal repositioning that enhances the interaction of an AP1 complex (containing c-Jun and ATF2). This repositioning is caused by the dissociation of HDAC2 with the ITGB8 core promoter, leading to increased histone H4 acetylation and a loosening of nucleosomal-DNA interactions allowing "opening" of the chromatin structure and increased association of c-Jun and ATF-2. These changes are mediated through NFκB- and p38-dependent pathways. Ultimately, these events culminate in increasing ITGB8 transcription, αvß8 surface expression, and αvß8-mediated TGFß activation.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Cadeias beta de Integrinas/biossíntese , Interleucina-1beta/biossíntese , Regiões Promotoras Genéticas , Fator de Crescimento Transformador beta/metabolismo , Acetilação , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , DNA/genética , DNA/metabolismo , Células HeLa , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Integrina alfa5/biossíntese , Integrina alfa5/genética , Cadeias beta de Integrinas/genética , Interleucina-1beta/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA