Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2865, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570528

RESUMO

Targeting neovascularization in glioblastoma (GBM) is hampered by poor understanding of the underlying mechanisms and unclear linkages to tumour molecular landscapes. Here we report that different molecular subtypes of human glioma stem cells (GSC) trigger distinct endothelial responses involving either angiogenic or circumferential vascular growth (vasectasia). The latter process is selectively triggered by mesenchymal (but not proneural) GSCs and is mediated by a subset of extracellular vesicles (EVs) able to transfer EGFR/EGFRvIII transcript to endothelial cells. Inhibition of the expression and phosphorylation of EGFR in endothelial cells, either pharmacologically (Dacomitinib) or genetically (gene editing), abolishes their EV responses in vitro and disrupts vasectasia in vivo. Therapeutic inhibition of EGFR markedly extends anticancer effects of VEGF blockade in mice, coupled with abrogation of vasectasia and prolonged survival. Thus, vasectasia driven by intercellular transfer of oncogenic EGFR may represent a new therapeutic target in a subset of GBMs.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Glioma/metabolismo , Glioblastoma/metabolismo , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/metabolismo
2.
Int J Surg Pathol ; 31(5): 890-895, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36562104

RESUMO

Clear cell papillary renal cell tumor (CCPRCT) is a distinct clinical entity with characteristic pathological features and non-aggressive clinical behavior. Diagnostically challenging cases present when there are immunomorphological findings of CCPRCT associated with heterogeneous morphologies, aggressive histological features, and advanced pathological stages-so-called CCPRCT-like tumors. In this report, we describe a heterogeneous, multifocal renal tumor with immunomorphological characteristics of CCPRCT but with associated aggressive features such as sarcomatoid and necrotic areas, perirenal and sinus fat involvement, and most notably, lymph node metastasis composed entirely of classic CCPRCT morphology and immunophenotype. Immunohistochemical and fluorescence in situ hybridization studies did not support a translocation renal cell carcinoma. Molecular analyses did not identify common mutations or chromosomal abnormalities seen in clear cell renal cell carcinoma or ELOC-mutated renal cell carcinoma. This case highlights that rare renal cell tumors remain difficult to classify and the distinction between CCPRCT and CCPRCT-like tumors remains to be better defined.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Hibridização in Situ Fluorescente , Metástase Linfática/diagnóstico , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Rim/patologia , Biomarcadores Tumorais/análise
3.
Commun Biol ; 5(1): 851, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987939

RESUMO

Measuring mRNA decay in tumours is a prohibitive challenge, limiting our ability to map the post-transcriptional programs of cancer. Here, using a statistical framework to decouple transcriptional and post-transcriptional effects in RNA-seq data, we uncover the mRNA stability changes that accompany tumour development and progression. Analysis of 7760 samples across 18 cancer types suggests that mRNA stability changes are ~30% as frequent as transcriptional events, highlighting their widespread role in shaping the tumour transcriptome. Dysregulation of programs associated with >80 RNA-binding proteins (RBPs) and microRNAs (miRNAs) drive these changes, including multi-cancer inactivation of RBFOX and miR-29 families. Phenotypic activation or inhibition of RBFOX1 highlights its role in calcium signaling dysregulation, while modulation of miR-29 shows its impact on extracellular matrix organization and stemness genes. Overall, our study underlines the integral role of mRNA stability in shaping the cancer transcriptome, and provides a resource for systematic interrogation of cancer-associated stability pathways.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias , Estabilidade de RNA , Humanos , MicroRNAs/genética , Neoplasias/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
4.
Hum Mol Genet ; 24(14): 4103-13, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25911677

RESUMO

Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was ∼350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metionina/química , Células Cultivadas , Cromatografia Líquida , Ciclo-Oxigenase 1/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Exoma , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Heterozigoto , Humanos , Doença de Leigh/genética , Mitocôndrias/metabolismo , Mutação , Fosforilação Oxidativa , Biossíntese de Proteínas , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
5.
Hum Mol Genet ; 24(2): 480-91, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25214534

RESUMO

French Canadian Leigh Syndrome (LSFC) is an early-onset, progressive neurodegenerative disorder with a distinct pattern of tissue involvement. Most cases are caused by a founder missense mutation in LRPPRC. LRPPRC forms a ribonucleoprotein complex with SLIRP, another RNA-binding protein, and this stabilizes polyadenylated mitochondrial mRNAs. LSFC fibroblasts have reduced levels of LRPPRC and a specific complex IV assembly defect; however, further depletion of mutant LRPPRC results in a complete failure to assemble a functional oxidative phosphorylation system, suggesting that LRPPRC levels determine the nature of the biochemical phenotype. We tested this hypothesis in cultured muscle cells and tissues from LSFC patients. LRPPRC levels were reduced in LSFC muscle cells, resulting in combined complex I and IV deficiencies. A similar combined deficiency was observed in skeletal muscle. Complex IV was only moderately reduced in LSFC heart, but was almost undetectable in liver. Both of these tissues showed elevated levels of complexes I and III. Despite the marked biochemical differences, the steady-state levels of LRPPRC and mitochondrial mRNAs were extremely low, LRPPRC was largely detergent-insoluble, and SLIRP was undetectable in all LSFC tissues. The level of the LRPPRC/SLIRP complex appeared much reduced in control tissues by the first dimension blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis compared with fibroblasts, and even by second dimension analysis it was virtually undetectable in control heart. These results point to tissue-specific pathways for the post-transcriptional handling of mitochondrial mRNAs and suggest that the biochemical defects in LSFC reflect the differential ability of tissues to adapt to the mutation.


Assuntos
Doença de Leigh/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Cultivadas , Humanos , Doença de Leigh/genética , Fígado/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Fosforilação Oxidativa , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
6.
Mol Biol Cell ; 24(6): 683-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23345593

RESUMO

SCO1 and SCO2 are metallochaperones whose principal function is to add two copper ions to the catalytic core of cytochrome c oxidase (COX). However, affected tissues of SCO1 and SCO2 patients exhibit a combined deficiency in COX activity and total copper content, suggesting additional roles for these proteins in the regulation of cellular copper homeostasis. Here we show that both the redox state of the copper-binding cysteines of SCO1 and the abundance of SCO2 correlate with cellular copper content and that these relationships are perturbed by mutations in SCO1 or SCO2, producing a state of apparent copper overload. The copper deficiency in SCO patient fibroblasts is rescued by knockdown of ATP7A, a trans-Golgi, copper-transporting ATPase that traffics to the plasma membrane during copper overload to promote efflux. To investigate how a signal from SCO1 could be relayed to ATP7A, we examined the abundance and subcellular distribution of several soluble COX assembly factors. We found that COX19 partitions between mitochondria and the cytosol in a copper-dependent manner and that its knockdown partially rescues the copper deficiency in patient cells. These results demonstrate that COX19 is necessary for the transduction of a SCO1-dependent mitochondrial redox signal that regulates ATP7A-mediated cellular copper efflux.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Membrana Celular/metabolismo , ATPases Transportadoras de Cobre , Fibroblastos , Humanos , Transporte de Íons , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Oxirredução , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
7.
Mol Biol Cell ; 24(3): 184-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23171548

RESUMO

Mammalian mitochondria harbor a dedicated translation apparatus that is required for the synthesis of 13 mitochondrial DNA (mtDNA)-encoded polypeptides, all of which are essential components of the oxidative phosphorylation (OXPHOS) complexes. Little is known about the mechanism of assembly of the mitoribosomes that catalyze this process. Here we show that C7orf30, a member of the large family of DUF143 proteins, associates with the mitochondrial large ribosomal subunit (mt-LSU). Knockdown of C7orf30 by short hairpin RNA (shRNA) does not alter the sedimentation profile of the mt-LSU, but results in the depletion of several mt-LSU proteins and decreased monosome formation. This leads to a mitochondrial translation defect, involving the majority of mitochondrial polypeptides, and a severe OXPHOS assembly defect. Immunoprecipitation and mass spectrometry analyses identified mitochondrial ribosomal protein (MRP)L14 as the specific interacting protein partner of C7orf30 in the mt-LSU. Reciprocal experiments in which MRPL14 was depleted by small interfering RNA (siRNA) phenocopied the C7orf30 knockdown. Members of the DUF143 family have been suggested to be universally conserved ribosomal silencing factors, acting by sterically inhibiting the association of the small and large ribosomal subunits. Our results demonstrate that, although the interaction between C7orf30 and MRPL14 has been evolutionarily conserved, human C7orf30 is, on the contrary, essential for mitochondrial ribosome biogenesis and mitochondrial translation.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas Ribossômicas/genética
8.
Cardiovasc Res ; 84(3): 368-77, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19578070

RESUMO

AIMS: G-protein-coupled receptors (GPCRs) modulate vascular tone, at least in part, via matrix metalloproteinase (MMP) transactivation of the epidermal growth factor receptor (EGFR). We previously have identified novel signalling pathways downstream of the EGFR suggestive of mitogen-activated protein kinase and mitochondrial redox control of vascular tone. In the present study, we examined whether MMP modulation of vascular tone involves phosphoinositide 3-kinase (PI3K) and mitochondrial ATP synthesis. METHODS AND RESULTS: To determine whether PI3K is required for the maintenance of adrenergic vascular tone, we first constricted rat small mesenteric arteries with phenylephrine (PE) and then perfused with PI3K inhibitors, LY294002 and wortmannin, both of which produced a dose-dependent vasodilatation. Next, to investigate whether MMPs modulate PI3K activity, we cultured rat aortic vascular smooth muscle cells (VSMCs) and stimulated them with GPCR agonists such as PE and angiotensin II. Inhibition of MMPs (by GM6001) or EGFR (by AG1478) or suppressing the expression of MMP-2 or MMP-7 or the EGFR by small interfering RNA blunted the PI3K phosphorylation of Akt induced by PE. Further, in VSMCs, PI3K inhibitors reduced the PE-induced increase in ATP synthesis and glucose transporter-4 translocation, an effect that was also observed with MMP and the EGFR inhibitors. Further, the PE-induced increase in ATP synthesis activated MMP-7 by mechanisms involving purinergic (P2X) receptors and calcium. CONCLUSION: These data suggest that the maintenance of adrenergic vascular tone by the MMP-EGFR pathway requires PI3K activation and ATP synthesis. Further, our data support the view that elevated levels of GPCR agonists exaggerate the MMP transactivation of EGFR response and contribute to enhanced vascular tone and development of cardiovascular disease such as hypertension.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores ErbB/metabolismo , Metaloproteases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Adrenérgicos/fisiologia , Vasoconstrição/fisiologia , Animais , Células Cultivadas , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Artérias Mesentéricas/metabolismo , Mitocôndrias/metabolismo , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia
9.
Hum Mol Genet ; 18(12): 2230-40, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19336478

RESUMO

Human SCO1 and SCO2 code for essential metallochaperones with ill-defined functions in the biogenesis of the CuA site of cytochrome c oxidase subunit II (CO II). Here, we have used patient cell lines to investigate the specific roles of each SCO protein in this pathway. By pulse-labeling mitochondrial translation products, we demonstrate that the synthesis of CO II is reduced in SCO2, but not in SCO1, cells. Despite this biosynthetic defect, newly synthesized CO II is more stable in SCO2 cells than in control cells. RNAi-mediated knockdown of mutant SCO2 abolishes CO II labeling in the translation assay, whereas knockdown of mutant SCO1 does not affect CO II synthesis. These results indicate that SCO2 acts upstream of SCO1, and that it is indispensable for CO II synthesis. The subsequent maturation of CO II is contingent upon the formation of a complex that includes both SCO proteins, each with a functional CxxxC copper-coordinating motif. In control cells, the cysteines in this motif in SCO1 exist as a mixed population comprised of oxidized disulphides and reduced thiols; however, the relative ratio of oxidized to reduced cysteines in SCO1 is perturbed in cells from both SCO backgrounds. Overexpression of wild-type SCO2, or knockdown of mutant SCO2, in SCO2 cells alters the ratio of oxidized to reduced cysteines in SCO1, suggesting that SCO2 acts as a thiol-disulphide oxidoreductase to oxidize the copper-coordinating cysteines in SCO1 during CO II maturation. Based on these data we present a model in which each SCO protein fulfills distinct, stage-specific functions during CO II synthesis and CuA site maturation.


Assuntos
Proteínas de Transporte/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Mutação , Oxirredução , Proteína Dissulfeto Redutase (Glutationa)/genética
10.
Arterioscler Thromb Vasc Biol ; 26(4): 819-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16424353

RESUMO

BACKGROUND: Agonists of G-protein-coupled receptors (eg, adrenoceptors and angiotensin receptors) signal, at least in part, through matrix metalloproteinases (such as matrix metalloproteinase [MMP]-7) that transactivate the epidermal growth factor receptor (EGFR). Focusing on adrenoceptors, we examined whether the MMP-dependent signaling pathway depends on reactive oxygen species (ROS). METHODS AND RESULTS: In isolated rat mesenteric arteries, selective stimulation of alpha1-adrenoceptors with phenylephrine induced MMP transactivation of the EGFR, mitochondrial ROS production (detected by MitoTrackerRed-CM-H2XRos-fluorescence and dihydroethidium-fluorescence and high-performance liquid chromatography [HPLC]/MS assay) and vasoconstriction. Inhibition of the synthesis of either MMP-7 or EGFR with anti-sense or siRNA oligonucleotides, respectively, decreased mitochondrial ROS production in response to phenylephrine. Targeted mitochondrial ROS scavenging with MitoTrackerRed-CM-H2XRos inhibited adrenergic vasoconstriction. Adrenoceptor-induced ROS increased mitochondrial membrane potential (Deltapsim), which was prevented by blockers of MMPs (GM6001, doxycycline), EGFR (AG1478), or complex I, all of which also prevented ROS production as well as vasoconstriction. CONCLUSIONS: Production of mitochondrial ROS is a new event in the pathway by which vasoactive agonists that induce MMP transactivation of the EGFR modulate vascular tone. Moreover, our findings suggest a connection between agonist-induced activity of MMPs, the promotion of oxidative stress, enhanced vascular tone, and hypertrophy, which are all implicated in the development and progression of vascular disease.


Assuntos
Artérias Mesentéricas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Vasoconstrição , Agonistas de Receptores Adrenérgicos alfa 1 , Animais , Dipeptídeos/farmacologia , Doxiciclina/farmacologia , Receptores ErbB/fisiologia , Técnicas In Vitro , Metaloproteinase 7 da Matriz/fisiologia , Artérias Mesentéricas/ultraestrutura , Mitocôndrias Musculares/fisiologia , Fenilefrina/farmacologia , Quinazolinas , Ratos , Transdução de Sinais/efeitos dos fármacos , Tirfostinas/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia
11.
Dev Biol ; 251(2): 320-32, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12435361

RESUMO

The zinc finger transcription factor GLI3 is considered a repressor of vertebrate Hedgehog (Hh) signaling. In humans, the absence of GLI3 function causes Greig cephalopolysyndactyly syndrome, affecting the development of the brain, eye, face, and limb. Because the etiology of these malformations is not well understood, we examined the phenotype of mouse Gli3-/- mutants as a model to investigate this. We observed an up-regulation of Fgf8 in the anterior neural ridge, isthmus, eye, facial primordia, and limb buds of mutant embryos, sites coinciding with the human disease. Intriguingly, endogenous apoptosis was reduced in Fgf8-positive areas in Gli3-/- mutants. Since SHH is thought to be involved in Fgf8 regulation, we compared Fgf8 expression in Shh-/- and Gli3-/-;Shh-/- mutant embryos. Whereas Fgf8 expression was almost absent in Shh-/- mutants, it was up-regulated in Gli3-/-;Shh-/- double mutants, suggesting that SHH is not required for Fgf8 induction, and that GLI3 normally represses Fgf8 independently of SHH. In the limb bud, we provide evidence that ectopic expression of Gremlin in Gli3-/- mutants might contribute to a decrease in apoptosis. Together, our data reveal that GLI3 limits Fgf8-expression domains in multiple tissues, through a mechanism that may include the induction or maintenance of apoptosis.


Assuntos
Apoptose , Encéfalo/embriologia , Proteínas de Ligação a DNA/fisiologia , Face/embriologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular , Botões de Extremidades/metabolismo , Proteínas do Tecido Nervoso , Proteínas Repressoras , Fatores de Transcrição/fisiologia , Proteínas de Xenopus , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Encéfalo/anormalidades , Citocinas , Face/anormalidades , Fator 8 de Crescimento de Fibroblasto , Proteínas Hedgehog , Fatores de Transcrição Kruppel-Like , Botões de Extremidades/citologia , Camundongos , Proteínas/genética , Transativadores/fisiologia , Regulação para Cima , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA