Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Mol Pharmacol ; 14(2): 253-260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32310055

RESUMO

AIMS: To show that acetate attenuates neuroinflammatory responses in activated microglia. BACKGROUND: Dietary acetate supplementation alleviates neuroglial activation in a rat model of neuroinflammation induced by intraventricular administration of lipopolysaccharide (LPS). However, the precise mechanism(s) underlying the anti-inflammatory effect of acetate, is not fully understood. OBJECTIVE: To determine whether acetate has inhibitory effects on LPS-induced neuroinflammatory responses in microglia. METHODS: We examined LPS-stimulated nitric oxide (NO) production in primary rat microglia and BV-2 cells. Protein expression of inducible NO synthase (iNOS) was determined by western blot analysis. The intracellular generation of reactive oxygen species (ROS) and glutathione (GSH) were also evaluated. RESULTS: In primary microglia, acetate decreased LPS-stimulated NO production in a dose-dependent manner, reaching significance at greater than 10 mM, and cell viability was not affected. Acetate suppressed LPS-induced expression of iNOS protein concomitantly with the decrease in NO. The LPS-induced increase in intracellular ROS production was attenuated by acetate. In addition, acetate prevented LPS-induced reduction of GSH. Notably, such suppressive effects of acetate on NO and ROS production were not observed in BV-2 cells. CONCLUSION: These findings suggest that acetate may alleviate neuroinflammatory responses by attenuating NO and ROS production in primary microglia but not in BV-2 cells. Other: All animals received humane care, and the animal protocols used in this study were approved by the Ethics Committees for Animal Experimentation.


Assuntos
Acetatos/farmacologia , Lipopolissacarídeos/metabolismo , Microglia/citologia , Doenças Neuroinflamatórias/metabolismo , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
2.
Neurochem Res ; 43(9): 1723-1735, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29947014

RESUMO

In several neurodegenerative diseases such as Alzheimer's disease (AD), microglia are hyperactivated and release nitric oxide (NO) and proinflammatory cytokines, resulting its neuropathology. Mounting evidence indicates that dietary supplementation with coconut oil (CNO) reduces the cognitive deficits associated with AD; however, the precise mechanism(s) underlying the beneficial effect of CNO are unknown. In the present study, we examined the effects of lauric acid (LA), a major constituent of CNO, on microglia activated experimentally by lipopolysaccharide (LPS), using primary cultured rat microglia and the mouse microglial cell line, BV-2. LA attenuated LPS-stimulated NO production and the expression of inducible NO synthase protein without affecting cell viability. In addition, LA suppressed LPS-induced reactive oxygen species and proinflammatory cytokine production, as well as phosphorylation of p38-mitogen activated protein kinase and c-Jun N-terminal kinase. LA-induced suppression of NO production was partially but significantly reversed in the presence of GW1100, an antagonist of G protein-coupled receptor (GPR) 40, which is an LA receptor on the plasma membrane. LA also decreased LPS-induced phagocytosis, which was completely reversed by co-treatment with GW1100. Moreover, LA alleviated amyloid-ß-induced enhancement of phagocytosis. These results suggest that attenuation of microglial activation by LA may occur via the GPR40-dependent pathway. Such effects of LA may reduce glial activation and the subsequent neuronal damage in AD patients who consume CNO.


Assuntos
Ácidos Láuricos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Linhagem Celular , Óleo de Coco/farmacologia , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA