Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 9(4): 425-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18705858

RESUMO

The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , Erwinia amylovora/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Erwinia amylovora/genética , Erwinia amylovora/patogenicidade , Nicotiana/citologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Virulência/genética
2.
Mol Plant Pathol ; 8(1): 55-67, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20507478

RESUMO

SUMMARY Erwinia amylovora is a plant pathogenic enterobacterium that causes fire blight disease of apple, pear and other rosaceous plants. A type III (T3) secretion system, encoded by clustered, chromosomal hrp genes (hypersensitive response and pathogenicity), is essential for infection, but only a few proteins are known that are secreted through this pathway (the T3 'secretome'). We developed an efficient protocol for purification and concentration of extracellular proteins and used it to characterize the T3 secretome of E. amylovora Ea273 by comparing preparations from the wild-type strain with those from mutants defective in hrp secretion, regulation, or in genes encoding putative T3-secreted proteins. Proteins were resolved by gel electrophoresis and identified using mass spectrometry and a draft sequence of the E. amylovora genome. Twelve T3-secreted proteins were identified, including homologues of known effector and helper proteins, and HrpJ, a homologue of YopN of Yersinia pestis. Several previously uncharacterized T3-secreted proteins were designated as Eops for Erwinia outer proteins. Analysis of the secretome of a non-polar hrpJ mutant demonstrated that HrpJ is required for accumulation of wild-type levels of secreted harpins. HrpJ was found to be essential for pathogenesis, and to play a major role in elicitation of the hypersensitive reaction in tobacco.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA