Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 28(9): 1243-1264, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32376988

RESUMO

Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.


Assuntos
Anormalidades Múltiplas/genética , Colágenos Fibrilares/genética , Efeito Fundador , Luxação do Quadril/genética , Escoliose/genética , Anormalidades Múltiplas/patologia , Adolescente , Animais , Desenvolvimento Ósseo , Criança , Pré-Escolar , Consanguinidade , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Colágenos Fibrilares/metabolismo , Frequência do Gene , Luxação do Quadril/patologia , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Linhagem , Escoliose/patologia , Síndrome
2.
Bone ; 60: 246-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389367

RESUMO

The autosomal dominant form of Caffey disease is a largely self-limiting infantile bone disorder characterized by acute inflammation of soft tissues and localized thickening of the underlying bone cortex. It is caused by a recurrent arginine-to-cysteine substitution (R836C) in the α1(I) chain of type I collagen. However, the functional link between this mutation and the underlying pathogenetic mechanisms still remains elusive. Importantly, it remains to be established as to how a point-mutation in type I collagen leads to a cascade of inflammatory events and spatio-temporally limited hyperostotic bone lesions, and how structural and inflammatory components contribute to the different organ-specific manifestations in Caffey disease. In this review we attempt to shed light on these questions based on the current understanding of other mutations in type I collagen, their role in perturbing collagen biogenesis, and consequent effects on cell-cell and cell-matrix interactions.


Assuntos
Hiperostose Cortical Congênita/patologia , Sequência de Aminoácidos , Colágeno Tipo I/química , Colágeno Tipo I/genética , Humanos , Hiperostose Cortical Congênita/diagnóstico por imagem , Hiperostose Cortical Congênita/fisiopatologia , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Radiografia
3.
J Biol Chem ; 285(44): 34126-33, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20729550

RESUMO

Mutations in fibrillin-1 or fibrillin-2, the major structural components of extracellular microfibrils, cause pleiotropic manifestations in Marfan syndrome and congenital contractural arachnodactyly, respectively. We recently found that fibrillin-1 and fibrillin-2 control bone formation by regulating osteoblast differentiation through the differential modulation of endogenous TGFß and bone morphogenetic protein signals. Here, we describe in vivo and ex vivo experiments that implicate the fibrillins as negative regulators of bone resorption. Adult Fbn2(-/-) mice display a greater than normal osteolytic response to locally implanted lipopolysaccharide-coated titanium particles. Although isolated cultures of Fbn2(-/-) preosteoclasts exhibited normal differentiation and activity, these features were substantially augmented when mutant or wild-type preosteoclasts were co-cultured with Fbn2(-/-) but not wild-type osteoblasts. Greater osteoclastogenic potential of Fbn2(-/-) osteoblasts was largely accounted for by up-regulation of the Rankl gene secondary to heightened TGFß activity. This conclusion was based on the findings that blockade of TGFß signaling blunts Rankl up-regulation in Fbn2(-/-) osteoblasts and bones and that systemic TGFß antagonism improves locally induced osteolysis in Fbn2(-/-) mice. Abnormally high Rankl expression secondary to elevated TGFß activity was also noted in cultured osteoblasts from Fbn1(-/-) mice. Collectively our data demonstrated that extracellular microfibrils balance local catabolic and anabolic signals during bone remodeling in addition to implying distinct mechanisms of bone loss in Marfan syndrome and congenital contractural arachnodactyly.


Assuntos
Regulação da Expressão Gênica , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ligante RANK/biossíntese , Fator de Crescimento Transformador beta1/biossíntese , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Técnicas de Cocultura , Fibrilina-1 , Fibrilina-2 , Fibrilinas , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microfibrilas/metabolismo , Proteínas dos Microfilamentos/química , Osteoclastos/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA