Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plants (Basel) ; 13(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38794475

RESUMO

A promising strategy for combating bacterial infections involves the development of agents that disarm the virulence factors of pathogenic bacteria, thereby reducing their pathogenicity without inducing direct lethality. Sortase A, a crucial enzyme responsible for anchoring virulence factors to the cell surface of several pathogenic bacteria, has emerged as a possible target for antivirulence strategies. A series of hippocastanum species (Aesculus pavia, A. parviflora, Aesculus x carnea, and A. hippocastanum) were used to prepare ethanol- and water-based extracts for assessing their effect on Staphylococcus aureus sortase A. The extracts were characterized through HPLC analysis, and their polyphenols content was determined using the Folin-Ciocalteu method. The specific toxicity profile was evaluated in Daphnia magna using the median lethal concentration (LC50) and against the fibroblast MRHF cell line. The half maximal inhibitory concentration (IC50) values on sortase A, determined after 30 min of incubation, ranged from 82.70 to 304.31 µg/mL, with the A. pavia water extract exhibiting the highest inhibitory effect. The assessment of the A. pavia water extract on human fibroblasts revealed no significant signs of toxicity, even at a concentration of 500 µg/mL. This reduced toxicity was further validated through the Daphnia assay. These findings highlight the low toxicity and the potential of this extract as a promising source of future development of bacteria antivirulence solutions.

2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139304

RESUMO

Thiadiazole derivatives have garnered significant attention in the field of medicinal chemistry due to their diverse pharmacological activities, including anticancer properties. This article presents the synthesis of a series of thiadiazole derivatives and investigates their chemical characterization and potential anticancer effects on various cell lines. The results of the nuclear magnetic resonance (NMR) analyses confirmed the successful formation of the target compounds. The anticancer potential was evaluated through in silico and in vitro cell-based assays using LoVo and MCF-7 cancer lines. The assays included cell viability, proliferation, apoptosis, and cell cycle analysis to assess the compounds' effects on cancer cell growth and survival. Daphnia magna was used as an invertebrate model for the toxicity evaluation of the compounds. The results revealed promising anticancer activity for several of the synthesized derivatives, suggesting their potential as lead compounds for further drug development. The novel compound 2g, 5-[2-(benzenesulfonylmethyl)phenyl]-1,3,4-thiadiazol-2-amine, demonstrated good anti-proliferative effects, exhibiting an IC50 value of 2.44 µM against LoVo and 23.29 µM against MCF-7 after a 48-h incubation and little toxic effects in the Daphnia test.


Assuntos
Antineoplásicos , Tiadiazóis , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/química , Tiadiazóis/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
3.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38004429

RESUMO

Osteoarthritis is characterized by progressive articular cartilage degradation, subchondral bone changes, and synovial inflammation, and affects various joints, causing pain and disability. Current osteoarthritis therapies, primarily focused on pain management, face limitations due to limited effectiveness and high risks of adverse effects. Safer and more effective treatments are urgently needed. Considering that the endocannabinoid 2-arachidonoyl glycerol is involved in pain processing, increasing its concentration through monoacylglycerol lipase (MAGL) inhibition reduces pain in various animal models. Furthermore, drug repurposing approaches leverage established drug safety profiles, presenting a cost-effective route to accelerate clinical application. To this end, cetirizine and levetiracetam were examined for their MAGL inhibitory effects. In vitro studies revealed that cetirizine and levetiracetam inhibited MAGL with IC50 values of 9.3931 µM and 3.0095 µM, respectively. In vivo experiments demonstrated that cetirizine, and to a lesser extent levetiracetam, reduced mechanical and thermal nociception in complete Freund adjuvant (CFA)-induced osteoarthritis in rats. Cetirizine exhibited a notable anti-inflammatory effect, reducing CFA-induced inflammation, as well as the inflammatory infiltrate and granuloma formation in the affected paw. These findings suggest that cetirizine may serve as a promising starting point for the development of novel compounds for osteoarthritis treatment, addressing both pain and inflammation.

4.
Plants (Basel) ; 12(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631147

RESUMO

The use of natural compounds as an alternative to synthetic molecules has become a significant subject of interest in recent decades. Stilbenoids are a group of phenolic compounds found in many plant species and they have recently gained the focus of a multitude of studies in medicine and chemistry, resveratrol being the most representative molecule. In this review, we focused on the research that illustrates the therapeutic potential of this class of natural molecules considering various diseases with higher incidence rates. PubChem database was searched for bioactivities of natural stilbenoids, while several keywords (i.e., "stilbenoids", "stilbenoid anticancer") were used to query PubMed database for relevant studies. The diversity and the simplicity of stilbenes' chemical structures together with the numerous biological sources are key elements that can simplify both the isolation of these compounds and the drug design of novel bioactive molecules. Resveratrol and other related compounds are heterogeneously distributed in plants and are mainly found in grapes and wine. Natural stilbenes were shown to possess a wide range of biological activities, such as antioxidant, anti-inflammatory, antihyperglycemic, cardioprotective, neuroprotective, and antineoplastic properties. While resveratrol is widely investigated for its benefits in various disorders, further studies are warranted to properly harness the therapeutic potential of less popular stilbenoid compounds.

5.
Life (Basel) ; 13(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37629492

RESUMO

PIM-1 kinase is a serine-threonine phosphorylating enzyme with implications in multiple types of malignancies, including prostate, breast, and blood cancers. Developing better search methodologies for PIM-1 kinase inhibitors may be a good strategy to speed up the discovery of an oncological drug approved for targeting this specific kinase. Computer-aided screening methods are promising approaches for the discovery of novel therapeutics, although certain limitations should be addressed. A frequent omission that is encountered in molecular docking is the lack of proper implementation of scoring functions and algorithms on the post-docking results, which usually alters the outcome of the virtual screening. The current study suggests a method for post-processing docking results, expressed either as binding affinity or score, that considers different binding modes of known inhibitors to the studied targets while making use of in vitro data, where available. The docking protocol successfully discriminated between known PIM-1 kinase inhibitors and decoy molecules, although binding energies alone were not sufficient to ensure a successful prediction. Logistic regression models were trained to predict the probability of PIM-1 kinase inhibitory activity based on binding energies and the presence of interactions with identified key amino acid residues. The selected model showed 80.9% true positive and 81.4% true negative rates. The discussed approach can be further applied in large-scale molecular docking campaigns to increase hit discovery success rates.

6.
Molecules ; 28(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513232

RESUMO

The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.


Assuntos
Antineoplásicos , Desenho de Fármacos , Inibidores de Proteínas Quinases , Pirazóis , Pirazóis/química , Pirazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/classificação , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Humanos , Animais
7.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511401

RESUMO

New pyrrolo[1,2-b]pyridazines were synthesized by 3 + 2 cycloaddition reaction between mesoionic oxazolo-pyridazinones and methyl/ethyl propiolate. The mesoionic compounds were generated in situ by action of acetic anhydride on 3(2H)pyridazinone acids obtained from corresponding esters by alkaline hydrolysis followed by acidification. The structures of the compounds were confirmed by elemental analyses and IR, 1H-NMR, 13C-NMR, and X-ray diffraction data. The regioselectivity of cycloaddition was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were evaluated for their cytotoxicity on plant cells (Triticum aestivum L.) and crustacean animal cells (Artemia franciscana Kellogg and Daphnia magna Straus). The results indicated that the tested compounds exhibited low toxicity on the plant cell (IC50 values higher than 200 µM), while on Artemia nauplii no lethality was observed. Daphnia magna assay showed that pyrrolo[1,2-b]pyridazines 5a and 5c could exhibit toxic effects, whereas, for the other compounds, toxicity was low to moderate. Also, the cytotoxic effects of the compounds were tested on three human adenocarcinoma-derived adherent cell lines (colon LoVo, ovary SK-OV-3, breast MCF-7). The in vitro compound-mediated cytotoxicity assays, performed by the MTS technique, demonstrated dose- and time-dependent cytotoxic activity for several compounds, the highest anti-tumor activity being observed for 5a, 2c, and 5f, especially against colon cancer cells.


Assuntos
Antineoplásicos , Piridazinas , Animais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Piridazinas/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/química
8.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375389

RESUMO

This paper describes the synthesis of new heterocycles from oxazol-5(4H)-one and 1,2,4-triazin-6(5H)-one classes containing a phenyl-/4-bromophenylsulfonylphenyl moiety. The oxazol-5(4H)-ones were obtained via condensation of 2-(4-(4-X-phenylsulfonyl)benzamido)acetic acids with benzaldehyde/4-fluorobenzaldehyde in acetic anhydride and in the presence of sodium acetate. The reaction of oxazolones with phenylhydrazine, in acetic acid and sodium acetate, yielded the corresponding 1,2,4-triazin-6(5H)-ones. The structures of the compounds were confirmed using spectral (FT-IR, 1H-NMR, 13C-NMR, MS) and elemental analysis. The toxicity of the compounds was evaluated on Daphnia magna Straus crustaceans and on the budding yeast Saccharomyces cerevisiae. The results indicate that both the heterocyclic nucleus and halogen atoms significantly influenced the toxicity against D. magna, with the oxazolones being less toxic than triazinones. The halogen-free oxazolone had the lowest toxicity, and the fluorine-containing triazinone exhibited the highest toxicity. The compounds showed low toxicity against yeast cells, apparently due to the activity of plasma membrane multidrug transporters Pdr5 and Snq2. The predictive analyses indicated an antiproliferative effect as the most probable biological action. The PASS prediction and CHEMBL similarity studies show evidence that the compounds could inhibit certain relevant oncological protein kinases. These results correlated with toxicity assays suggest that halogen-free oxazolone could be a good candidate for future anticancer investigations.


Assuntos
Oxazolona , Triazinas , Oxazolona/química , Triazinas/toxicidade , Acetato de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae
9.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557851

RESUMO

Due to the structure of acylhydrazones both by the pharmacophore -CO-NH-N= group and by the different substituents present in the molecules of compounds of this class, various pharmacological activities were reported, including antitumor, antimicrobial, antiviral, antiparasitic, anti-inflammatory, immunomodulatory, antiedematous, antiglaucomatous, antidiabetic, antioxidant, and actions on the central nervous system and on the cardiovascular system. This fragment is found in the structure of several drugs used in the therapy of some diseases that are at the top of public health problems, like microbial infections and cardiovascular diseases. Moreover, the acylhydrazone moiety is present in the structure of some compounds with possible applications in the treatment of other different pathologies, such as schizophrenia, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Considering these aspects, we consider that a study of the literature data regarding the structural and biological properties of these compounds is useful.


Assuntos
Doença de Alzheimer , Anti-Infecciosos , Doença de Huntington , Doença de Parkinson , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Huntington/tratamento farmacológico
10.
Plants (Basel) ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145799

RESUMO

Since medicinal plants are widely used in treating various diseases, phytoconstituents enrichment strategies are of high interest for plant growers. First of all, we investigated the impact of phytosociological cultivation on polyphenolic content (total flavonoids-TFL, and total polyphenols-TPC) of peppermint (Mentha piperita L.) and lemon balm (Melissa officinalis L.) leaves, using spectrophotometric methods. Secondly, the influence of chemical (NPK) and organic (BIO) fertilization on polyphenolic content and plant material quality was also assessed. Dry extracts were obtained from harvested leaves using hydroethanolic extraction solvents for further qualitative and quantitative assessment of phytoconstituents by FT-ICR MS and UHPLC-MS. Furthermore, the antioxidant activity of leaf extracts was determined in vitro using DPPH, ABTS and FRAP methods. Molecular docking simulations were employed to further evaluate the antioxidant potential of obtained extracts, predicting the interactions of identified phytochemicals with sirtuins. The concentration of polyphenols was higher in the plant material harvested from the phytosociological culture. Moreover, the use of BIO fertilizer led to the biosynthesis of a higher content of polyphenols. Higher amounts of phytochemicals, such as caffeic acid, were determined in extracts obtained from phytosociological crops. The antioxidant activity was dependent on polyphenols concentration, more potent inhibition values being observed for the extracts obtained from the phytosociological batches. Molecular docking studies and MM/PBSA calculations revealed that the obtained extracts have the potential to directly activate sirtuins 1, 5 and 6 through several polyphenolic compounds, such as rosmarinic acid, thus complementing the free radical scavenging activity with the potential stimulation of endogenous antioxidant defense mechanisms. In conclusion, growing medicinal plants in phytosociological cultures treated with biofertilizers can have a positive impact on plant material quality, concentration in active constituents and biological activity.

11.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015158

RESUMO

"Drug repositioning" is a modern strategy used to uncover new applications for out-of-date drugs. In this context, nalidixic acid, the first member of the quinolone class with limited use today, has been selected to obtain nine new metal complexes with lanthanide cations (La3+, Sm3+, Eu3+, Gd3+, Tb3+); the experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms, findings that are supported by DFT calculations. The cytotoxic activity of the complexes has been studied using the tumoral cell lines, MDA-MB-231 and LoVo, and a normal cell line, HUVEC. The most active compounds of the series display selective activity against LoVo. Their affinity for DNA and the manner of binding have been tested using UV-Vis spectroscopy and competitive binding studies; our results indicate that major and minor groove binding play a significant role in these interactions. The affinity towards serum proteins has also been evaluated, the complexes displaying higher affinity towards albumin than apotransferrin.

12.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012121

RESUMO

The current study describes the synthesis, physicochemical characterization and cytotoxicity evaluation of a new series of pyrrole derivatives in order to identify new bioactive molecules. The new pyrroles were obtained by reaction of benzimidazolium bromide derivatives with asymmetrical acetylenes in 1,2-epoxybutane under reflux through the Huisgen [3 + 2] cycloaddition of several ylide intermediates to the corresponding dipolarophiles. The intermediates salts were obtained from corresponding benzimidazole with bromoacetonitrile. The structures of the newly synthesized compounds were confirmed by elemental analysis, spectral techniques (i.e., IR, 1H-NMR and 13C-NMR) and single-crystal X-ray analysis. The cytotoxicity of the synthesized compounds was evaluated on plant cells (i.e., Triticum aestivum L.) and animal cells using aquatic crustaceans (i.e., Artemia franciscana Kellogg and Daphnia magna Straus). The potential antitumor activity of several of the pyrrole derivatives was studied by performing in vitro cytotoxicity assays on human adenocarcinoma-derived cell lines (i.e., LoVo (colon), MCF-7 (breast), and SK-OV-3 (ovary)) and normal human umbilical vein endothelial cells (HUVECs). The obtained results of the cytotoxicity assessment indicated that the tested compounds had nontoxic activity on Triticum aestivum L., while on Artemia franciscana Kellogg nauplii, only compounds 2c and 4c had moderate toxicity. On Daphnia magna, 4b and 4c showed high toxicity; 2a, 2b, and 2c moderate to high toxicity; only 4a and 4d were nontoxic. The compound-mediated cytotoxicity assays showed that several pyrrole compounds demonstrated dose- and time-dependent cytotoxic activity against all tested tumor cell lines, the highest antitumor properties being achieved by 4a and its homologue 4d, especially against LoVo colon cells.


Assuntos
Antineoplásicos , Pirróis , Animais , Antineoplásicos/química , Fatores Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais , Feminino , Humanos , Estrutura Molecular , Pirróis/química , Relação Estrutura-Atividade
13.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630776

RESUMO

The current work presents an objective overview of the impact of one important heterocyclic structure, the pyrazole ring, in the development of anti-proliferative drugs. A set of 1551 pyrazole derivatives were extracted from the National Cancer Institute (NCI) database, together with their growth inhibition effects (GI%) on the NCI's panel of 60 cancer cell lines. The structures of these derivatives were analyzed based on the compounds' averages of GI% values across NCI-60 cell lines and the averages of the values for the outlier cells. The distribution and the architecture of the Bemis-Murcko skeletons were analyzed, highlighting the impact of certain scaffold structures on the anti-proliferative effect's potency and selectivity. The drug-likeness, chemical reactivity and promiscuity risks of the compounds were predicted using AMDETlab. The pyrazole ring proved to be a versatile scaffold for the design of anticancer drugs if properly substituted and if connected with other cyclic structures. The 1,3-diphenyl-pyrazole emerged as a useful scaffold for potent and targeted anticancer candidates.


Assuntos
Antineoplásicos , Pirazóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Pirazóis/química , Pirazóis/farmacologia
14.
Molecules ; 26(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885677

RESUMO

Staphylococcus aureus (S. aureus) is a causative agent of many hospital- and community-acquired infections with the tendency to develop resistance to all known antibiotics. Therefore, the development of novel antistaphylococcal agents is of urgent need. Sortase A is considered a promising molecular target for the development of antistaphylococcal agents. The main aim of this study was to identify novel sortase A inhibitors. In order to find novel antistaphylococcal agents, we performed phenotypic screening of a library containing 15512 compounds against S. aureus ATCC43300. The molecular docking of hits was performed using the DOCK program and 10 compounds were selected for in vitro enzymatic activity inhibition assay. Two inhibitors were identified, N,N-diethyl-N'-(5-nitro-2-(quinazolin-2-yl)phenyl)propane-1,3-diamine (1) and acridin-9-yl-(1H-benzoimidazol-5-yl)-amine (2), which decrease sortase A activity with IC50 values of 160.3 µM and 207.01 µM, respectively. It was found that compounds 1 and 2 possess antibacterial activity toward 29 tested multidrug resistant S. aureus strains with MIC values ranging from 78.12 to 312.5 mg/L. These compounds can be used for further structural optimization and biological research.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Aminoaciltransferases/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Inibidores Enzimáticos/química , Humanos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade
15.
Pharmaceuticals (Basel) ; 14(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066442

RESUMO

In order to develop novel chemotherapeutic agents with potent anticancer activities, a series of new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles were designed and synthesized. The structures of the new compounds were established using elemental analyses, IR and NMR spectral data. The compounds were evaluated for their anticancer potential on two standardized human cell lines, HT-29 (colon adenocarcinoma) and MDA-MB-231 (breast adenocarcinoma). Cytotoxicity was measured by MTS assay, while cell cycle arrest and apoptosis assays were conducted using a flow cytometer, the results showing that the cell line MDA-MB-231 is more sensitive to the compounds' action. The results of the predictive studies using the PASS application and the structural similarity analysis indicated STAT3 and miR-21 as the most probable pharmacological targets for the new compounds. The promising effect of compound 3e, 2-[2-(phenylsulfanylmethyl)phenyl]-5-(4-pyridyl)-1,3,4-oxadiazole, especially on the MDA-MB-231 cell line motivates future studies to improve the anticancer profile and to reduce the toxicological risks. It is worth noting that 3e produced a low toxic effect in the D. magna 24 h assay and the predictive studies on rat acute toxicity suggest a low degree of toxic risks.

16.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228104

RESUMO

"Drug repositioning" is a current trend which proved useful in the search for new applications for existing, failed, no longer in use or abandoned drugs, particularly when addressing issues such as bacterial or cancer cells resistance to current therapeutic approaches. In this context, six new complexes of the first-generation quinolone oxolinic acid with rare-earth metal cations (Y3+, La3+, Sm3+, Eu3+, Gd3+, Tb3+) have been synthesized and characterized. The experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms; these findings are supported by DFT (density functional theory) calculations for the Sm3+ complex. The cytotoxic activity of the complexes, as well as the ligand, has been studied on MDA-MB 231 (human breast adenocarcinoma), LoVo (human colon adenocarcinoma) and HUVEC (normal human umbilical vein endothelial cells) cell lines. UV-Vis spectroscopy and competitive binding studies show that the complexes display binding affinities (Kb) towards double stranded DNA in the range of 9.33 × 104 - 10.72 × 105. Major and minor groove-binding most likely play a significant role in the interactions of the complexes with DNA. Moreover, the complexes bind human serum albumin more avidly than apo-transferrin.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , DNA/metabolismo , Metais Terras Raras/farmacologia , Ácido Oxolínico/síntese química , Ácido Oxolínico/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Teoria da Densidade Funcional , Fluorescência , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Metais Terras Raras/química , Conformação Molecular , Ácido Oxolínico/química , Ligação Proteica/efeitos dos fármacos , Albumina Sérica Humana/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
17.
Oncol Rep ; 44(2): 589-598, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627025

RESUMO

One of the most commonly discussed topics in the field of drug discovery is the continuous search for anticancer therapies, in which small­molecule development plays an important role. Although a number of techniques have been established over the past decades, one of the main methods for drug discovery and development is still represented by rational, ligand­based drug design. However, the success rate of this method could be higher if not affected by cognitive bias, which renders many potential druggable scaffolds and structures overlooked. The present study aimed to counter this bias by presenting an objective overview of the most important heterocyclic structures in the development of anti­proliferative drugs. As such, the present study analyzed data for 91,438 compounds extracted from the Developmental Therapeutics Program (DTP) database provided by the National Cancer Institute. Growth inhibition data from these compounds tested on a panel of 60 cancer cell lines representing various tissue types (NCI­60 panel) was statistically interpreted using 6 generated scores assessing activity, selectivity, growth inhibition efficacy and potency of different structural scaffolds, Bemis­Murcko skeletons, chemical features and structures common among the analyzed compounds. Of the most commonly used rings, the most prominent anti­proliferative effects were produced by quinoline, tetrahydropyran, benzimidazole and pyrazole, while overall, the optimal results were produced by complex ring structures that originate from natural compounds. These results highlight the impact of certain ring structures on the anti­proliferative effects in drug design. In addition, considering that medicinal chemists usually focus their research on simpler scaffolds the majority of the time with no significant pay­off, the present study indicates several unused complex scaffolds that could be exploited when designing anticancer therapies for optimal results in the fight against cancer.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Compostos Heterocíclicos/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/patologia , Relação Estrutura-Atividade
18.
Molecules ; 25(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290461

RESUMO

Protein kinases play a pivotal role in signal transduction, protein synthesis, cell growth and proliferation. Their deregulation represents the basis of pathogenesis for numerous diseases such as cancer and pathologies with cardiovascular, nervous and inflammatory components. Protein kinases are an important target in the pharmaceutical industry, with 48 protein kinase inhibitors (PKI) already approved on the market as treatments for different afflictions including several types of cancer. The present work focuses on facilitating the identification of new PKIs with antitumoral potential through the use of data-mining and basic statistics. The National Cancer Institute (NCI) granted access to the results of numerous previously tested compounds on 60 tumoral cell lines (NCI-60 panel). Our approach involved analyzing the NCI database to identify compounds that presented similar growth inhibition (GI) profiles to that of existing PKIs, but different from approved oncologic drugs with other mechanisms of action, using descriptive statistics and statistical outliers. Starting from 34,000 compounds present in the database, we filtered 400 which displayed selective inhibition on certain cancer cell lines similar to that of several already-approved PKIs.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Bases de Dados Factuais , Humanos , Inibidores de Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Estados Unidos
19.
Rom J Morphol Embryol ; 61(2): 493-502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33544801

RESUMO

This paper reports the synthesis, analgesic activity, acute toxicity and histopathological (HP) assessment of four new compounds from oxazol-5(4H)-ones class that contain in their molecule a diarylsulfone moiety. The new 2-(4-(4-bromophenylsulfonyl)phenyl)-4-arylidene-oxazol-5(4H)-ones were obtained by reaction of 2-(4-(4-bromophenyl-sulfonyl)benzamido)acetic acid intermediate with aromatic aldehydes (benzaldehyde, 4-methoxy, 4-nitro or 4-bromobenzaldehyde), in acetic anhydride and in the presence of anhydrous sodium acetate. The new compounds have been characterized by spectral techniques, such as: Fourier-transform infrared spectroscopy (FT-IR), mass spectrometry (MS), proton nuclear magnetic resonance (1H-NMR) and by elemental analysis. The acute toxicity of the new oxazol-5(4H)-ones in mice was assessed through "acute toxic class" method, according to Organization for Economic Co-operation and Development (OECD) Guidelines. The HP assessment of some preserved organs collected from mice has been performed. The analgesic activity of all new synthesized compounds was carried out with two pharmacological tests: the writhing test and the hot plate test. In order to predict the binding affinities of the synthesized oxazol-5(4H)-ones derivatives against molecular targets involved in pain and inflammation, molecular docking simulations were performed. The results of the writhing test indicated that the most active compound was the oxazolone that contains in the molecule a methoxy group. The acute oral toxicity study revealed no lethal effect of new compounds. The HP assessment of the preserved organs collected from mice did not indicate any cytohistopathological aspects that can be linked to any inflammatory, neoplastic or cytotoxic process, demonstrating the low toxicity of new compounds.


Assuntos
Analgésicos/uso terapêutico , Oxaprozina/uso terapêutico , Analgésicos/farmacologia , Animais , Feminino , Humanos , Camundongos , Oxaprozina/farmacologia
20.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703393

RESUMO

The use of some very well-known chemotherapeutic agents, such as cisplatin, is limited by toxicity in normal tissues and the development of drug resistance. In order to address drug resistance and the side-effects of anti-cancer agents, recent research has focused on finding novel combinations of anti-cancer agents with non-overlapping mechanisms of action. The cytotoxic effect of the synthetic 5-aminopyrazole derivative N-[[3-(4-bromophenyl)-1H-pyrazol-5-yl]-carbamothioyl]-4-chloro-benzamide (BC-7) was evaluated by the bis-Benzamide H 33342 trihydrochloride/propidium iodide (Hoechst 33342/PI) dual staining method against HeLa, MeWo, HepG2, Vero, and MRHF cell lines. Quantitative fluorescence image analysis was used for the elucidation of mechanism of action and synergism with cisplatin in HeLa cells. BC-7 displayed selective cytotoxicity towards HeLa cells (IC50 65.58 ± 8.40 µM) and induced apoptosis in a mitochondrial- and caspase dependent manner. This was most likely preceded by cell cycle arrest in the early M phase and the onset of mitotic catastrophe. BC-7 increased the cytotoxic effect of cisplatin in a synergistic manner with combination index (CI) values less than 0.9 accompanied by highly favourable dose reduction indices. Therefore, the results obtained support the implication that BC-7 has potential anti-cancer properties and that combinations of BC-7 with cisplatin should be further investigated for potential clinical applications.


Assuntos
Apoptose/efeitos dos fármacos , Complexos de Coordenação , Citotoxinas , Chumbo , Pirazóis , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Células HeLa , Células Hep G2 , Humanos , Chumbo/química , Chumbo/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA