Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Dent Assoc ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39254615

RESUMO

BACKGROUND: Human papillomavirus (HPV) and COVID-19 are contagious diseases for which effective vaccines exist. Dental care professionals' involvement in vaccination campaigns for these conditions has been proposed, but there is a lack of understanding of dentists' roles in vaccination, specifically assessing patients' attitudes around dentists as vaccinators for HPV and COVID-19. METHODS: Using a cross-sectional design and convenience sampling, a 12-item validated survey was distributed to community members to determine perceptions about dentists' roles in vaccination for HPV and COVID-19. Demographic characteristics, vaccination status, knowledge of the diseases, vaccination intentions, and willingness to receive education about, recommendations for, and administration of vaccine from a dentist were assessed. Responses were analyzed using bivariate and multivariate analysis. RESULTS: Of 618 participants, most were vaccinated previously against HPV and COVID-19 (n = 462 [75.6%] and n = 371 [61.0%], respectively). Participants responded more favorably to dentist involvement in educating, discussing, and administering COVID-19 vaccines than HPV vaccines (P < .05). Participants' knowledge of HPV was found to be low compared with that of COVID-19. There were significant differences across demographic groups, with race most frequently associated with differences in responses to COVID-19 and HPV-related questions. CONCLUSIONS: Formative data to develop interventions to support dentists' participation in vaccination campaigns are provided. Participants' acceptance of COVID-19 vaccination over HPV vaccination may reflect the public awareness of COVID-19 vs HPV due to daily relevance of this disease, or the lack of knowledge about HPV, particularly its oropharyngeal impacts. PRACTICAL IMPLICATIONS: The authors provide evidence to support dentists' involvement in vaccine education and distribution, expanding previous literature into evaluation of a new disease context (COVID-19). Lack of knowledge of HPV may affect willingness to receive the HPV vaccine, presenting an opportunity for education.

2.
Eur J Med Chem ; 277: 116761, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39151276

RESUMO

The P-glycoprotein (ABCB1)-mediated multidrug resistance (MDR) has emerged as a significant impediment to the efficacy of cancer chemotherapy in clinical therapy, which could promote the development of effective agents for MDR reversal. In this work, we reported the exploration of novel pyrazolo [1,5-a]pyrimidine derivatives as potent reversal agents capable of enhancing the sensitivity of ABCB1-mediated MDR MCF-7/ADR cells to paclitaxel (PTX). Among them, compound 16q remarkably increased the sensitivity of MCF-7/ADR cells to PTX at 5 µM (IC50 = 27.00 nM, RF = 247.40) and 10 µM (IC50 = 10.07 nM, RF = 663.44). Compound 16q could effectively bind and stabilize ABCB1, and does not affect the expression and subcellular localization of ABCB1 in MCF-7/ADR cells. Compound 16q inhibited the function of ABCB1, thereby increasing PTX accumulation, and interrupting the accumulation and efflux of the ABCB1-mediated Rh123, thus resulting in exhibiting good reversal effects. In addition, due to the potent reversal effects of compound 16q, the abilities of PTX to inhibit tubulin depolymerization, and induce cell cycle arrest and apoptosis in MCF-7/ADR cells under low-dose conditions were restored. These results indicate that compound 16q might be a promising potent reversal agent capable of revising ABCB1-mediated MDR, and pyrazolo [1,5-a]pyrimidine might represent a novel scaffold for the discovery of new ABCB1-mediated MDR reversal agents.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Antineoplásicos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Pirazóis , Pirimidinas , Humanos , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Paclitaxel/farmacologia , Paclitaxel/química , Células MCF-7 , Descoberta de Drogas , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
Eur J Med Chem ; 276: 116678, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029337

RESUMO

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.


Assuntos
Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias/tratamento farmacológico , Animais , Estrutura Molecular
4.
Eur J Med Chem ; 276: 116694, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39047607

RESUMO

As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.


Assuntos
Antineoplásicos , Via de Sinalização Hippo , Neoplasias , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Eur J Med Chem ; 275: 116611, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38901104

RESUMO

The identification of chemically different inhibitors that target the colchicine site of tubulin is still of great value for cancer treatment. Combretastatin A-4(CA-4), a naturally occurring colchicine-site binder characterized by its structural simplicity and biological activity, has served as a structural blueprint for the development of novel analogues with improved safety and therapeutic efficacy. In this study, a library of forty-eight 4-phenyl-5-quinolinyl substituted triazole, pyrazole or isoxazole analouges of CA-4, were synthesized and evaluated for their cytotoxicity against Esophageal Squamous Cell Carcinoma (ESCC) cell lines. Compound C11, which features a 2-methyl substitution at the quinoline and carries an isoxazole ring, emerged as the most promising, with 48 h IC50s of less than 20 nmol/L against two ESCC cell lines. The findings from EBI competitive assay, CETA, and in vitro tubulin polymerization assay of C11 are consistent with those of the positive control colchicine, demonstrating the clear affinity of compound C11 to the colchicine binding site. The subsequent cellular-based mechanism studies revealed that C11 significantly inhibited ESCC cell proliferation, arrested cell cycle at the M phase, induced apoptosis, and impeded migration. Experiments conducted in vivo further confirmed that C11 effectively suppressed the growth of ESCC without showing any toxicity towards the selected animal species. Overall, our research suggests that the tubulin polymerization inhibitor incorporating quinoline and the isoxazole ring may deserve consideration for cancer therapy.


Assuntos
Antineoplásicos , Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Isoxazóis , Moduladores de Tubulina , Tubulina (Proteína) , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Isoxazóis/farmacologia , Isoxazóis/química , Isoxazóis/síntese química , Estrutura Molecular , Polimerização/efeitos dos fármacos , Quinolinas/farmacologia , Quinolinas/química , Quinolinas/síntese química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
6.
Bioorg Chem ; 145: 107237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442613

RESUMO

Overactivation of neddylation has been found in a number of common human tumor-related diseases. In recent years, targeting the neddylation pathway has become an appealing anti-cancer strategy, and it is critical to find neddylation inhibitors with novel structures and higher efficacy. Here, we present the discovery of novel inhibitors of the NEDD8-activating enzyme (NAE) and their antitumor activity in vitro. All synthesized 1,4-disubstituted piperidine compounds were evaluated for antiproliferative activity against MGC-803, MCF-7, A549, and KYSE-30 cells. Among five representative compounds, III-26 bearing a quinazoline motif was identified as the lead one due to the fact that it significantly hindered the neddylation of Cullin1. Cellular mechanisms elucidated that III-26 inhibited the proliferation, migration, and invasion of UBC12-overexpressed MGC-803 cell lines, as well as induced apoptosis and arrested the cell cycle at G2/M phase. Importantly, III-26 reduced NAE activity, thus selectively preventing neddylation of Cullin3 and Cullin1 over other Cullin members. At a dose of 4 µM, III-26 virtually entirely blocked UBC12-NEDD8 conjugation in MGC-803 cells. Our molecular modeling and kinetic investigation suggested that this compound may function as a non-covalent inhibitor of NAE.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose
7.
Eur J Med Chem ; 251: 115228, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881982

RESUMO

As an important epigenetic regulator, histone lysine specific demethylase 1 (LSD1) has become an attractive target for the discovery of anticancer agents. In this work, a series of tranylcypromine-based derivatives were designed and synthesized. Among them, compound 12u exhibited the most potent inhibitory potency on LSD1 (IC50 = 25.3 nM), and also displayed good antiproliferative effects on MGC-803, KYSE450 and HCT-116 cells with IC50 values of 14.3, 22.8 and 16.3 µM, respectively. Further studies revealed that compound 12u could directly act on LSD1 and inhibit LSD1 in MGC-803 cells, thereby significantly increasing the expression levels of mono-/bi-methylation of H3K4 and H3K9. In addition, compound 12u could induce apoptosis and differentiation, inhibit migration and cell stemness in MGC-803 cells. All these findings suggested that compound 12u was an active tranylcypromine-based derivative as a LSD1 inhibitor that inhibited gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Tranilcipromina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Antineoplásicos/farmacologia , Histona Desmetilases/metabolismo , Relação Estrutura-Atividade , Proliferação de Células
10.
J Enzyme Inhib Med Chem ; 36(1): 1715-1731, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34425716

RESUMO

Hippo signalling pathway plays a crucial role in tumorigenesis and cancer progression. In this work, we identified an N-aryl sulphonamide-quinazoline derivative, compound 9i as an anti-gastric cancer agent, which exhibited potent antiproliferative ability with IC50 values of 0.36 µM (MGC-803 cells), 0.70 µM (HCT-116 cells), 1.04 µM (PC-3 cells), and 0.81 µM (MCF-7 cells), respectively and inhibited YAP activity by the activation of p-LATS. Compound 9i was effective in suppressing MGC-803 xenograft tumour growth in nude mice without obvious toxicity and significantly down-regulated the expression of YAP in vivo. Compound 9i arrested cells in the G2/M phase, induced intrinsic apoptosis, and inhibited cell colony formation in MGC-803 and SGC-7901 cells. Therefore, compound 9i is to be reported as an anti-gastric cancer agent via activating the Hippo signalling pathway and might help foster a new strategy for the cancer treatment by activating the Hippo signalling pathway regulatory function to inhibit the activity of YAP.


Assuntos
Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinazolinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Hippo , Humanos , Camundongos Nus , Estrutura Molecular , Quinazolinas/síntese química , Transdução de Sinais , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Bioorg Med Chem ; 29: 115875, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232875

RESUMO

NEDDylation is a post-translational modification of a protein, which transfers Ubiquitin like protein NEDD8 (Neuronal Precursor Cell-expressed Developmentally Down-regulated Protein 8) to the lysine residue of the product through a three-stage enzymatic reaction, and widely regulates many biological processes, such as cell cycle signal transduction and immune recognition. In the past ten years, we have witnessed tremendous progress in the study of protein ubiquitination modification, from modification mechanisms to drug development. Which suggests that inhibition of NEDDylation is an effective way to inhibit tumor. A variety of biological detection methods have been developed during the development of the inhibitor. In this review, we briefly introduced the modification process and substrates of NEDDylation, and discussed detection methods of NEDDylation activity in detail. This review will provide an up-to-date and comprehensive review of the methods for detecting NEDDylation activity that will contribute to NEDDylation inhibitor development.


Assuntos
Antineoplásicos/farmacologia , Proteína NEDD8/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Humanos , Proteína NEDD8/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA