Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Hyperthermia ; 41(1): 2369749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38925872

RESUMO

PURPOSE: Dentin hypersensitivity (DH) is a prevalent condition, but long-term effective treatments are scarce. Differentiation of odontoblast-like cells is promising for inducing tertiary dentinogenesis and ensuring sustained therapeutic efficacy against DH. This study examined the effects and mechanism of action of mild heat stress (MHS) on the differentiation of odontoblast-like MDPC-23 cells. METHODS: We used a heating device to accurately control the temperature and duration, mimicking the thermal microenvironment of odontoblast-like cells. Using this device, the effects of MHS on cell viability and differentiation were examined. Cell viability was assessed using the MTT assay. The expression and nucleoplasmic ratio of the yes-associated protein (YAP) were examined by western blotting and immunofluorescence. The gene expression levels of heat shock proteins (HSPs) and dentin matrix protein-1 (DMP1) were measured using qPCR. Dentin sialophosphoprotein (DSPP) expression was evaluated using immunofluorescence and immunoblotting. Verteporfin was used to inhibit YAP activity. RESULTS: Mild heat stress (MHS) enhanced the odontoblast differentiation of MDPC-23 cells while maintaining cell viability. MHS also increased YAP activity, as well as the levels of HSP25 mRNA, HSP70 mRNA, HSP90α mRNA, DMP1 mRNA, and DSPP protein. However, after YAP inhibition, both cell viability and the levels of HSP90α mRNA, DMP1 mRNA, and DSPP protein were reduced. CONCLUSION: YAP plays a crucial role in maintaining cell viability and promoting odontoblast differentiation of MDPC-23 cells under MHS. Consequently, MHS is a potential therapeutic strategy for DH, and boosting YAP activity could be beneficial for maintaining cell viability and promoting odontoblast differentiation.


Assuntos
Diferenciação Celular , Resposta ao Choque Térmico , Odontoblastos , Proteínas de Sinalização YAP , Odontoblastos/metabolismo , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Linhagem Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sobrevivência Celular
2.
J Nanobiotechnology ; 22(1): 199, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654266

RESUMO

Considering the high recrudescence and the long-lasting unhealed large-sized wound that affect the aesthetics and cause dysfunction after resection of maxillofacial malignant skin tumors, a groundbreaking strategy is urgently needed. Photothermal therapy (PTT), which has become a complementary treatment of tumors, however, is powerless in tissue defect regeneration. Therefore, a novel multifunctional sodium nitroprusside and Fe2+ ions loaded microneedles (SNP-Fe@MNs) platform was fabricated by accomplishing desirable NIR-responsive photothermal effect while burst releasing nitric oxide (NO) after the ultraviolet radiation for the ablation of melanoma. Moreover, the steady releasing of NO in the long term by the platform can exert its angiogenic effects via upregulating multiple related pathways to promote tissue regeneration. Thus, the therapeutic dilemma caused by postoperative maxillofacial skin malignancies could be conquered through promoting tumor cell apoptosis via synergistic PTT-gas therapy and subsequent regeneration process in one step. The bio-application of SNP-Fe@MNs could be further popularized based on its ideal bioactivity and appealing features as a strategy for synergistic therapy of other tumors occurred in skin.


Assuntos
Melanoma , Óxido Nítrico , Terapia Fototérmica , Neoplasias Cutâneas , Animais , Terapia Fototérmica/métodos , Camundongos , Neoplasias Cutâneas/terapia , Melanoma/terapia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Linhagem Celular Tumoral , Agulhas , Humanos , Nitroprussiato/farmacologia , Apoptose/efeitos dos fármacos , Pele , Ferro/química , Raios Ultravioleta
3.
Sci Rep ; 14(1): 4728, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413668

RESUMO

Tea is an indispensable beverage in people's daily life. However, the relationship between tea intake and dental caries and periodontitis is controversial. We extracted datasets for tea intake and oral diseases from genome-wide association studies (GWASs) conducted by the UK Biobank and the Gene Lifestyle Interactions in Dental Endpoints consortium. We selected 38 single-nucleotide polymorphisms (SNPs) significantly associated with tea intake as instrumental variables (IVs) (P < 5.0 × 10-8). Mendelian randomization (MR) was performed to investigate the potential causality between tea intake and caries and periodontitis. Multivariable Mendelian randomization (MVMR) analyses were utilized to estimate causal effects of tea intake on risk of caries and periodontitis after adjusting for smoking, body mass index (BMI), and socioeconomic factors. The results showed that higher tea intake was suggestively associated with fewer natural teeth (ß = - 0.203; 95% CI = 0.680 to 0.980; P = 0.029) and higher risk of periodontitis (OR = 1.622; 95% CI = 1.194 to 2.205; P = 0.002). After Bonferroni correction, the causality of tea intake on periodontitis remained significant. The significance of periodontitis disappeared after adjusting for the socioeconomic factors in MVMR (OR = 1.603; 95% CI = 0.964 to 2.666; P = 0.069). Tea intake had no association with risk of caries. Statistical insignificance of the heterogeneity test and pleiotropy test supported the validity of the MR study. Our results provide insight into the potential relationship between tea intake and oral diseases from a dietary lifestyle perspective, which may help prevent oral diseases.


Assuntos
Cárie Dentária , Periodontite , Humanos , Cárie Dentária/epidemiologia , Cárie Dentária/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Periodontite/epidemiologia , Periodontite/genética , Polimorfismo de Nucleotídeo Único , Chá
4.
J Ethnopharmacol ; 325: 117825, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38296175

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a classic traditional Chinese medicine, Magnolia officinalis (M. officinalis) is widely used in digestive diseases. It has rich gastrointestinal activity including inflammatory bowel disease (IBD) treatment, but the mechanism is not clear. AIM OF THE STUDY: In recent years, there has been a growing interest in investigating the regulatory effects of herbal compounds on transient receptor potential (TRP) channel proteins. Transient receptor potential vanilloid 4 (TRPV4), a subtype involved in endothelial permeability regulation, was discussed as the target of M. officinalis in the treatment of IBD in the study. Based on the targeting effect of TRPV4, this study investigated the active ingredients and mechanism of M. officinalis extract in treating IBD. MATERIALS AND METHODS: To reveal the connection between the active ingredients in M. officinalis and TRPV4, a bioactivity-guided high performance liquid chromatography system coupled with mass spectrometry identification was utilized to screen for TRPV4 antagonists. TRPV4 siRNA knockdown experiment was employed to validate the significance of TRPV4 as a crucial target in regulating endothelial permeability by honokiol (HON). The interaction of the active ingredient representing HON with TRPV4 was confirmed by molecular docking, fluorescence-based thermal shift and live cell calcium imaging experiments. The potential binding sites and inhibitory mechanisms of HON in TRPV4 were analyzed by molecular dynamics simulation and microscale thermophoresis. The therapeutic effect of HON based on TRPV4 was discussed in DSS-IBD mice. RESULTS: Our finding elucidated that the inhibitory activity of M. officinalis against TRPV4 is primarily attributed to HON analogues. The knockdown of TRPV4 expression significantly impaired the calcium regulation and permeability protection in endothelial cells. The mechanism study revealed that HON specifically targets the Q239 residue located in the ankyrin repeat domain of TRPV4, and competitively inhibits channel opening with adenosine triphosphate (ATP) binding. The immunofluorescence assay demonstrated that the administration of HON enhances the expression and location of VE-Cadherin to protect the endothelial barrier and attenuates immune cell infiltration. CONCLUSIONS: The finding suggested that HON alleviates IBD by improving endothelial permeability through TRPV4. The discovery provides valuable insights into the potential therapeutic strategy of active natural products for alleviating IBD.


Assuntos
Compostos Alílicos , Repetição de Anquirina , Compostos de Bifenilo , Doenças Inflamatórias Intestinais , Fenóis , Camundongos , Animais , Células Endoteliais , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Permeabilidade
5.
Chin Herb Med ; 15(4): 476-484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094019

RESUMO

Modern medicine has made remarkable achievements in safeguarding people's life and health, however, it is increasingly found that in the face of complex diseases, selective targeting of single target is often difficult to produce a comprehensive rehabilitation effect, and is prone to induce drug resistance, toxic side effects. Traditional Chinese medicine (TCM) has a long history of clinical application, and its clinical value in the treatment of complex diseases such as cardiovascular and cerebrovascular diseases, digestive diseases, skin diseases, rheumatism and immunity diseases, and adjuvant treatment of tumors has been proven to have obvious advantages. However, its modern research is relatively lagging behind, and in the face of the aging society and the characteristics of the modern disease spectrum, the traditional knowledge-driven research paradigm seems to be stuck in a bottleneck and difficult to make greater breakthroughs. Focusing on the key issues of TCM development in the new era, the clinical value-oriented strategy becomes to be a new research paradigm of TCM inheritance and innovation development, and dominant diseases would be the focus of the TCM inheritance and innovation development, which has been highly valued in recent years by the TCM academia and the relevant national management departments. Based on the clinical value, a series of policies are formulated for the selection and evaluation of the TCM dominant diseases (TCMDD), and exploratory researches about the clinical efficacy characteristics, the modern scientific connotation interpretation were carried out. The clinical value-oriented research paradigm of TCMDD inheritance and innovation development has been initially formed, which is characterized by strong policy support as the guarantee, systematic and standardized selection and evaluation methods as the driving force, scientific and effective research on internal mechanisms as the expansion, and effective clinical guidelines and principles as the transformation, which is of great value in promoting the high-quality development of the industries and undertaking of TCM. In this paper, the main policy support, selection and evaluation methods, therapeutic effect characterization, and modern scientific connotation research strategies of TCMDD in recent years have been comprehensively sorted out, with a view to providing the healthy and benign development of the research on TCMDD.

6.
Case Rep Oncol ; 16(1): 1402-1408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028571

RESUMO

Introduction: Histologically, endometrial neuroendocrine carcinoma is an extremely rare pathological type of endometrial cancer. In addition, this type is characterized by high invasiveness and poor clinical outcome, which was classified into carcinoid (low grade), and small-cell and large-cell neuroendocrine carcinoma (high grade). Globally, reports on endometrial carcinoid carcinoma are limited. Clinically, it is also rare to see primary squamous cell carcinoma of endometrium. Case Presentation: Here, we report an interesting case of mixed carcinoma of endometrium with both carcinoid and squamous cell carcinoma, which presented with persistent vaginal bleeding and hyponatremia. Conclusion: Careful pathologic review is necessary to diagnose this rare disease. More studies in the future are warranted to demonstrate the primary surgical treatments and the efficacy of adjuvant therapy of this disease.

7.
BMC Oral Health ; 23(1): 717, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798684

RESUMO

BACKGROUND: The objective of this systematic review and meta-analysis was to evaluate the effects of non-surgical periodontal therapy (NSPT) on inflammatory-related cytokines/adipocytokines in periodontitis patients with or without obesity. METHODS: We followed the preferred reporting items for systematic reviews and meta-analyses statement and registered the study (CRD42022375331) in the Prospective International Register of Systematic Reviews. We screened randomized-controlled trials and controlled clinical trials from six databases up to December 2022. Quality assessment was performed with RoB-2 and ROBINS-I tools for randomized trials and non-randomized trials, respectively. Meta-analysis was carried out using a random-effect model. RESULTS: We included seventeen references in the systematic analysis, and sixteen in the meta-analysis. Baseline results of pro-inflammatory biomarkers, including serum interleukin (IL)-6, serum and gingival crevicular fluid (GCF), tumor necrosis factor (TNF)-a, serum C-reactive protein (CRP)/hs-CRP, and serum and GCF resistin, were higher in obesity subjects than in normal weight subjects. The effect of NSPT with respect to levels of cytokines/adipocytokines, including IL-6, TNF-a, CRP/hs-CRP, resistin, adiponectin, leptin and retinol binding protein 4 (RBP4), were then analyzed in the systematic and meta-analysis. After three months of NSPT, serum (MD = -0.54, CI = -0.62 - -0.46), and GCF (MD = -2.70, CI = -4.77 - -0.63) levels of IL-6, along with the serum RBP4 (MD = -0.39, CI = -0.68-0.10) decreased in periodontitis individuals with obesity. NSPT also improved GCF adiponectin levels after three months (MD = 2.37, CI = 0.29 - 4.45) in periodontitis individuals without obesity. CONCLUSIONS: Obese status altered the baseline levels of cytokines/adipocytokines (serum IL-6, serum and GCF TNF-a, serum CRP/hs-CRP, and serum and GCF resistin). Then NSPT can shift the levels of specific pro-inflammatory mediators and anti-inflammatory mediators in biological fluids, both in obesity and non-obesity individuals. NSPT can reduce serum and GCF IL-6 levels together with serum RBP4 level in individuals with obesity after 3 months, besides, there is no sufficient evidence to prove that obese patients have a statistically significant decrease in the levels of other cytokines compared to patients with normal weight. NSPT can also increase GCF adiponectin level in normal weight individuals after 3 months. Our findings imply the potential ideal follow-up intervals and sensitive biomarkers for clinical bioanalysis in personalized decision-making of effect of NSPT due to patients' BMI value.


Assuntos
Periodontite Crônica , Citocinas , Humanos , Citocinas/metabolismo , Adipocinas/análise , Adipocinas/metabolismo , Resistina , Proteína C-Reativa/metabolismo , Interleucina-6/metabolismo , Periodontite Crônica/terapia , Adiponectina , Estudos Prospectivos , Obesidade/complicações , Obesidade/terapia , Biomarcadores/análise , Fator de Necrose Tumoral alfa/metabolismo , Líquido do Sulco Gengival/química , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo
8.
Sci Data ; 10(1): 597, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684242

RESUMO

The oriental armyworm, Mythimna separata, is an extremely destructive polyphagous pest with a broad host range that seriously threatens the safety of agricultural production. Here, a high-quality chromosome-level genome was assembled using Illumina, PacBio HiFi long sequencing, and Hi-C scaffolding technologies. The genome size was 706.30 Mb with a contig N50 of 22.08 Mb, and 99.2% of the assembled sequences were anchored to 31 chromosomes. In addition, 20,375 protein-coding genes and 258.68 Mb transposable elements were identified. The chromosome-level genome assembly of M. separata provides a significant genetic resource for future studies of this insect and contributes to the development of management strategies.


Assuntos
Elementos de DNA Transponíveis , Genoma de Inseto , Spodoptera , Animais , Agricultura , Spodoptera/genética
9.
Eur J Trauma Emerg Surg ; 49(6): 2467-2477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37436467

RESUMO

BACKGROUND: There is a general clinical consensus that early surgical stabilization of rib fractures (SSRF, ≤ 48-72 h after admission) can benefit patients, and this is only regarding the surgeon's opinions. This study assessed the true outcomes of young and middle-aged patients at different surgical timings. METHODS: This retrospective cohort study was conducted among patients aged 30-55 years who were hospitalized with a diagnosis of isolated rib fractures and underwent SSRF between July 2017 and September 2021. The patients were divided into early (≤ 3 days), mid- (4-7 days) and late (8-14 days) groups, according to the interval (days) between surgery and injury date. The impact of different surgical timings on clinical outcomes, patients, and families was assessed by comparing SSRF-related data during hospitalization and follow-up studies of clinicians, patients themselves, and family caregivers 1-2 months after surgery. RESULTS: In this study, 155 complete patient data were finally included, including 52, 64, and 39 patients in the early, mid, and late groups, respectively. Length of operation, preoperative closed chest drainage rate, length of hospital stay, intensive care unit length of stay, duration of invasive mechanical ventilation in the early group were lower than those in the intermediate and late groups. Additionally, hemothorax and excess pleural fluid incidence after SSRF was lower in the early group than in the intermediate and late groups. Postoperative follow-up results showed that patients in the early group had higher SF-12 physical component summary scores and shorter duration of absence from work. Family caregivers had lower Zarit Burden Interview scores than those in the mid- and late groups. CONCLUSION: From the experience of our institution's SSRF, early surgery is safe and offers additional potential benefits for young and middle-aged patients and families with isolated rib fractures.


Assuntos
Médicos , Fraturas das Costelas , Pessoa de Meia-Idade , Humanos , Fraturas das Costelas/cirurgia , Estudos Retrospectivos , Retroalimentação , Cuidadores , Tempo de Internação
10.
Phytother Res ; 37(9): 4282-4297, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37282760

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) plays a role in regulating pulmonary fibrosis (PF). While several TRPV4 antagonists including magnolol (MAG), have been discovered, the mechanism of action is not fully understood. This study aimed to investigate the effect of MAG on alleviating fibrosis in chronic obstructive pulmonary disease (COPD) based on TRPV4, and to further analyze its mechanism of action on TRPV4. COPD was induced using cigarette smoke and LPS. The therapeutic effect of MAG on COPD-induced fibrosis was evaluated. TRPV4 was identified as the main target protein of MAG using target protein capture with MAG probe and drug affinity response target stability assay. The binding sites of MAG at TRPV4 were analyzed using molecular docking and small molecule interaction with TRPV4-ankyrin repeat domain (ARD). The effects of MAG on TRPV4 membrane distribution and channel activity were analyzed by co-immunoprecipitation, fluorescence co-localization, and living cell assay of calcium levels. By targeting TRPV4-ARD, MAG disrupted the binding between phosphatidylinositol 3 kinase γ and TRPV4, leading to hampered membrane distribution on fibroblasts. Additionally, MAG competitively impaired ATP binding to TRPV4-ARD, inhibiting TRPV4 channel opening activity. MAG effectively blocked the fibrotic process caused by mechanical or inflammatory signals, thus alleviating PF in COPD. Targeting TRPV4-ARD presents a novel treatment strategy for PF in COPD.


Assuntos
Antineoplásicos , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Repetição de Anquirina , Fibrose Pulmonar/metabolismo , Canais de Cátion TRPV/metabolismo , Simulação de Acoplamento Molecular , Fibrose
11.
Exp Ther Med ; 25(2): 76, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36684658

RESUMO

The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.

12.
Phytother Res ; 37(2): 717-730, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36216328

RESUMO

Airway remodeling is one of the hallmarks of chronic obstructive pulmonary disease (COPD) and is closely related to the dysregulation of epithelial-mesenchymal transition (EMT). Smad3, an important transcriptional regulator responsible for transducing TGF-ß1 signals, is a promising target for EMT modulation. We found that ligustilide (Lig), a novel Smad3 covalent inhibitor, effectively inhibited airway remodeling in cigarette smoke (CS) combined with lipopolysaccharide (LPS)-induced COPD mice. Oral administration of an alkynyl-modified Lig probe was used to capture and trace target proteins in mouse lung tissue, revealing Smad3 in airway epithelium as a key target of Lig. Protein mass spectrometry and Smad3 mutation analysis via in-gel imaging indicated that the epoxidized metabolite of Lig covalently binds to the MH2 domain of Smad3 at Cys331/337. This irreversible bonding destroys the interaction of Smad3-SARA, prevents Smad3 phosphorylation activation, and subsequently suppresses the nuclear transfer of p-Smad3, the EMT process, and collagen deposition in TGF-ß1-stimulated BEAS-2B cells and COPD mice. These findings provide experimental support that Lig attenuates COPD by repressing airway remodeling which is attributed to its suppression on the activation of EMT process in the airway epithelium via targeting Smad3 and inhibiting the recruitment of the Smad3-SARA heterodimer in the TGF-ß1/Smad3 pathway.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Remodelação das Vias Aéreas , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Epitélio/metabolismo , Transição Epitelial-Mesenquimal , Proteína Smad3/metabolismo
13.
Biomedicines ; 10(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428473

RESUMO

Reactive oxygen species (ROS) are byproducts of cell metabolism produced by living cells and signal mediators in biological processes. As unstable and highly reactive oxygen-derived molecules, excessive ROS production and defective oxidant clearance, or both, are associated with the pathogenesis of several conditions. Among them, ROS are widely involved in oral and maxillofacial diseases, such as periodontitis, as well as other infectious diseases or chronic inflammation, temporomandibular joint disorders, oral mucosal lesions, trigeminal neuralgia, muscle fatigue, and oral cancer. The purpose of this paper is to outline how ROS contribute to the pathophysiology of oral and maxillofacial regions, with an emphasis on oral infectious diseases represented by periodontitis and mucosal diseases represented by oral ulcers and how to effectively utilize and eliminate ROS in these pathological processes, as well as to review recent research on the potential targets and interventions of cutting-edge antioxidant materials. The PubMed, Web of Science, and Embase databases were searched using the MesH terms "oral and maxillofacial diseases", "reactive oxygen species", and "antioxidant materials". Irrelevant, obsolete, imprecise, and repetitive articles were excluded through screening of titles, abstracts, and eventually full content. The full-text data of the selected articles are, therefore, summarized using selection criteria. While there are various emerging biomaterials used as drugs themselves or delivery systems, more attention was paid to antioxidant drugs with broad application prospects and rigorous prophase animal experimental results.

15.
Int J Biol Macromol ; 194: 895-902, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843814

RESUMO

Cytochrome P450 monooxygenase (P450 or CYP) plays an important role in the metabolism of insecticides and plant allelochemicals by insects. CYP321B1, a novel Spodoptera litura P450 gene, was identified and characterized. CYP321B1 contains a 1488 bp open reading frame (ORF) that encodes a 495 amino acid protein. In fourth instar larvae, the highest CYP321B1 expression levels were found in the midgut and fat body. In the tannin feeding test, tannin can significantly induce the expression of CYP321B1 in the midgut and fat body of 4th instar larvae. To verify the function of CYP321B1, RNA interference and metabolome analysis were performed. The results showed that silencing CYP321B1 significantly reduced the rate of weight gain under tannin induction. Metabolome analysis showed silencing affected 47 different metabolites, mainly involved in secondary metabolite biosynthesis and amino acid metabolism, including amino acids, lipid fatty acids, organic acids and their derivatives. Henoxyacetic acid and cysteamine are the most highly regulated metabolites, respectively. These findings demonstrate that CYP321B1 plays an important role in tannin detoxification and metabolism. Functional knowledge about metabolite detoxification genes in this major herbivorous insect pest can provide new insights into this biological process and provide new targets for agricultural pest control.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Inativação Gênica , Inativação Metabólica , Metabolismo Secundário , Spodoptera/fisiologia , Taninos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Enzimático do Citocromo P-450/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Metaboloma , Metabolômica/métodos , Filogenia , Isoformas de Proteínas , Interferência de RNA , Spodoptera/classificação
16.
Sci Total Environ ; 814: 152523, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34953824

RESUMO

Science-based water quality criteria are the cornerstone of water quality standards. This paper improved the methodology for the derivation of human health water quality criteria (HHWQC) and applied it for benzo[a]pyrene (BaP) to provide a scientific basis for the management of polycyclic aromatic hydrocarbons (PAHs) in surface waters. First, the national bioaccumulation factors (BAFs) for BaP were derived using field-measured BAFs and field-measured biota-sediment accumulation factors (BSAFs) across China, respectively, which results were comparable and demonstrated the reliability of the obtained national BAFs for BaP. The HHWQC for BaP derived using the probabilistic approach were 3.98-4.70 ng/L and were comparable with those derived by the deterministic approach, suggesting the accuracy of derived HHWQC for BaP. Through the probabilistic approach, the probability distributions of lifetime incremental cancer risk from BaP in water were provided and the consumption rates of aquatic products at trophic level 2 and 3 were identified as factors influencing risks of BaP significantly. The derived HHWQC for BaP in China are approximately 33-36 times higher than those in the United States because of the high national BAFs and cancer slope factor of BaP used for the United States. In addition, the recommended HHWQC for BaP conform to the situation in China and are approximately 1.5 times higher than the standard value of BaP in the current National Surface Water Quality Standard (GB 3838-2002) in China (2.80 ng/L), which will play an important role in the amendment of National Surface Water Quality Standard in the future. Approximately 36% of the studied surface freshwater in China contains BaP with levels exceeding the recommended HHWQC, suggesting the pollution of BaP in surface freshwater is severe and needs to be given more attention. This study is significant for the scientific development of HHWQC worldwide and the management of pollutants in water.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Benzo(a)pireno , Bioacumulação , China , Monitoramento Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Qualidade da Água
17.
Nutrients ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960014

RESUMO

Mounting evidence has shown that single-targeted therapy might be inadequate to achieve satisfactory effects. Thus, drug combinations are gaining attention as they can regulate multiple targets to obtain more beneficial effects. Heat shock protein 90 (HSP90) is a molecular chaperone that assists the protein assembly and folding of client proteins and maintains their stability. Interfering with the interaction between HSP90 and its client proteins by inhibiting the latter's activity may offer a new approach toward combination therapy. The HSP90 client protein AKT plays an important role in the inflammatory response syndrome caused by infections. In this study, the dietary flavone baicalein was identified as a novel inhibitor of HSP90 that targeted the N-terminal ATP binding pocket of HSP90 and hindered the chaperone cycle, resulting in AKT degradation. Combining baicalein with genipin, which was extracted from Gardenia jasminoides, could inhibit the pleckstrin homology domain of AKT, significantly increasing the anti-inflammatory effects both in vitro and in vivo. This synergistic effect was attributed to the reduction in AKT expression and phosphorylation. Thus, elucidating the mechanism underlying this effect will provide a new avenue for the clinical application and development of synergistic anti-inflammatory drugs.


Assuntos
Flavanonas/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Iridoides/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Colagogos e Coleréticos/administração & dosagem , Colagogos e Coleréticos/farmacologia , Dieta , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Flavanonas/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Iridoides/administração & dosagem , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Pseudomonas aeruginosa , Células RAW 264.7 , Distribuição Aleatória
18.
Signal Transduct Target Ther ; 6(1): 329, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471087

RESUMO

It's a challenge for detecting the therapeutic targets of a polypharmacological drug from variations in the responsed networks in the differentiated populations with complex diseases, as stable coronary heart disease. Here, in an adaptive, 31-center, randomized, double-blind trial involving 920 patients with moderate symptomatic stable angina treated by 14-day Danhong injection(DHI), a kind of polypharmacological drug with high quality control, or placebo (0.9% saline), with 76-day following-up, we firstly confirmed that DHI could increase the proportion of patients with clinically significant changes on angina-frequency assessed by Seattle Angina Questionnaire (ΔSAQ-AF ≥ 20) (12.78% at Day 30, 95% confidence interval [CI] 5.86-19.71%, P = 0.0003, 13.82% at Day 60, 95% CI 6.82-20.82%, P = 0.0001 and 8.95% at Day 90, 95% CI 2.06-15.85%, P = 0.01). We also found that there were no significant differences in new-onset major vascular events (P = 0.8502) and serious adverse events (P = 0.9105) between DHI and placebo. After performing the RNA sequencing in 62 selected patients, we developed a systemic modular approach to identify differentially expressed modules (DEMs) of DHI with the Zsummary value less than 0 compared with the control group, calculated by weighted gene co-expression network analysis (WGCNA), and sketched out the basic framework on a modular map with 25 functional modules targeted by DHI. Furthermore, the effective therapeutic module (ETM), defined as the highest correlation value with the phenotype alteration (ΔSAQ-AF, the change in SAQ-AF at Day 30 from baseline) calculated by WGCNA, was identified in the population with the best effect (ΔSAQ-AF ≥ 40), which is related to anticoagulation and regulation of cholesterol metabolism. We assessed the modular flexibility of this ETM using the global topological D value based on Euclidean distance, which is correlated with phenotype alteration (r2: 0.8204, P = 0.019) by linear regression. Our study identified the anti-angina therapeutic module in the effective population treated by the multi-target drug. Modular methods facilitate the discovery of network pharmacological mechanisms and the advancement of precision medicine. (ClinicalTrials.gov identifier: NCT01681316).


Assuntos
Angina Estável/tratamento farmacológico , Fármacos Cardiovasculares/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Adolescente , Adulto , Idoso , Angina Estável/genética , Angina Estável/patologia , Método Duplo-Cego , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
19.
Arch Med Sci ; 17(5): 1164-1174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522245

RESUMO

INTRODUCTION: This study was performed to explore the function of B-Raf proto-oncogene-activated non-coding RNA (BANCR) in laryngeal squamous cell carcinoma (LSCC) and cisplatin resistance. MATERIAL AND METHODS: The relative expression level of long non-coding RNA (lncRNA) BANCR was examined by qRT-PCR in tumor tissues and adjacent tissues, normal laryngeal cells (Het-1A) and laryngeal squamous carcinoma cells (TU686, TU177). Cisplatin-resistant laryngeal squamous carcinoma cell lines (TU686-DDP-R, TU177-DDP-R) were established. Next, we inhibited BANCR expression by transfecting siRNA-BANCR and enhanced BANCR expression by transfecting pcDNA3.1-BANCR into TU686, TU177, TU686-DDP-R and TU177-DDP-R cells. The CCK-8 assay and clone formation assay were performed to detect colony proliferation ability and formation ability of cells. Further, to investigate through which BANCR cell viability/formation is regulated, we detected the expression of MRP1, Bcl-2, p-PKB, and Bax by western blot. RESULTS: BANCR was highly expressed in laryngeal squamous carcinoma tissues and cells. Chemoresistance was generated in TU686-DDP-R and TU177-DDP-R compared with TU686 and TU177 cells after cisplatin treatment. In addition, upregulated lncRNA BANCR reduced or postponed cell sensitivity to cisplatin by enhancing cell proliferation in TU686 and TU177 cells. Meanwhile, the expression of MRP1, Bcl-2, and p-PKB was increased, while Bax was reduced. After cisplatin treatment, down-regulation of BANCR could consequently attenuate TU686-DDP-R and TU177-DDP-R cell proliferation, and the expression of MRP1, Bcl-2, and p-PKB was decreased and Bax was increased. CONCLUSIONS: Down-regulation of BANCR reverses cisplatin resistance of cisplatin-resistant LSCC cell lines.

20.
J Ethnopharmacol ; 281: 114524, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34400262

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW: We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS: Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS: Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Magnolia , Preparações de Plantas/uso terapêutico , Animais , Humanos , Medicina Tradicional , Preparações de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA