Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Lab Invest ; 103(4): 100041, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870291

RESUMO

Alcoholic fatty liver disease (AFLD) is an early stage of alcohol-related liver disease characterized by abnormal lipid metabolism in hepatocytes. To date, to our knowledge, there have been no effective strategies for preventing or treating alcohol-related liver disease besides alcohol abstinence. Berberine (BBR) is the main bioactive ingredient extracted from traditional Chinese medicines, such as Coptis and Scutellaria, which protect liver function and relieve liver steatosis. However, the potential role of BBR in AFLD remains unclear. Therefore, this study investigated the protective effects of BBR against Gao-binge model-induced AFLD in 6- to 8-week-old C57BL/6J male mice in vivo and ethyl alcohol (EtOH)-induced alpha mouse liver 12 (AML-12) cells in vitro. The results showed that BBR (200 mg/kg) attenuated alcoholic liver injury and suppressed lipid accumulation and metabolism disorders in vivo. Consistently, BBR effectively inhibited the expression of sterol regulatory element-binding transcription factor 1C, sterol regulatory element-binding transcription factor 2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoenzymeA reductase in EtOH-stimulated AML-12 cells in vitro and promoted the expression of sirtuin 1 (SIRT1) in EtOH-fed mice and EtOH-treated AML-12 cells. Furthermore, SIRT1 silencing attenuated the hepatic steatosis alleviation potential of BBR treatment. Mechanistically, molecular docking revealed the binding effect of BBR and adenosine monophosphate-activated protein kinase (AMPK). The results of further studies showed that a decrease in AMPK activity was accompanied by a significant inhibition of SIRT1 expression. SIRT1 silencing attenuated the protective effect of BBR, whereas the inhibition of its expression had no apparent effect on AMPK phosphorylation, suggesting that SIRT1 acts downstream of AMPK in AFLD. Collectively, BBR ameliorated abnormal lipid metabolism and alleviated EtOH-induced liver injury via the AMPK/SIRT1 pathway in AFLD mice.


Assuntos
Berberina , Fígado Gorduroso , Leucemia Mieloide Aguda , Masculino , Camundongos , Animais , Sirtuína 1/metabolismo , Metabolismo dos Lipídeos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Etanol/toxicidade , Fatores de Transcrição/metabolismo , Esteróis/metabolismo , Esteróis/farmacologia , Leucemia Mieloide Aguda/metabolismo
2.
Biochem Pharmacol ; 210: 115497, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907496

RESUMO

Hepatic fibrosis (HF) is a reversible wound-healing response characterized by excessive extracellular matrix (ECM) deposition and secondary to persistent chronic injury. Bromodomain protein 4 (BRD4) commonly functions as a "reader" to regulate epigenetic modifications involved in various biological and pathological events, but the mechanism of HF remains unclear. In this study, we established a CCl4-induced HF model and spontaneous recovery model in mice and found aberrant BRD4 expression, which was consistent with the results in human hepatic stellate cells (HSCs)- LX2 cells in vitro. Subsequently, we found that distriction and inhibition of BRD4 restrained TGFß-induced trans-differentiation of LX2 cells into activated, proliferative myofibroblasts and accelerated apoptosis, and BRD4 overexpression blocked MDI-induced LX2 cells inactivation and promoted the proliferation and inhibited apoptosis of inactivated cells. Additionally, adeno-associated virus serotype 8-loaded short hairpin RNA-mediated BRD4 knockdown in mice significantly attenuated CCl4-induced fibrotic responses including HSCs activation and collagen deposition. Mechanistically, BRD4 deficiency inhibited PLK1 expression in activated LX2 cells, and ChIP and Co-IP assays revealed that BRD4 regulation of PLK1 was dependent on P300-mediated acetylation modification for H3K27 on the PLK1 promoter. In conclusion, BRD4 deficiency in the liver alleviates CCl4-induced HF in mice, and BRD4 participates in the activation and reversal of HSCs through positively regulating the P300/H3K27ac/PLK1 axis, providing a potential insight for HF therapy.


Assuntos
Células Estreladas do Fígado , Proteínas Nucleares , Humanos , Camundongos , Animais , Proteínas Nucleares/metabolismo , Células Estreladas do Fígado/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Adv Rheumatol ; 62(1): 25, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820936

RESUMO

BACKGROUND: Phospholipase C-like 1 (PLCL1), a protein that lacks catalytic activity, has similar structures to the PLC family. The aim of this research was to find the function and underlying mechanisms of PLCL1 in fibroblast-like synoviocyte (FLS) of rheumatoid arthritis (RA). METHODS: In this study, we first analyzed the expression of PLCL1 in the synovial tissue of RA patients and K/BxN mice by immunohistochemical staining. Then silencing or overexpressing PLCL1 in FLS before stimulating by TNF-α. The levels of IL-6, IL-1ß and CXCL8 in FLS and supernatants were detected by Western Blot (WB), Real-Time Quantitative PCR and Enzyme Linked Immunosorbent Assay. We used INF39 to specifically inhibit the activation of NLRP3 inflammasomes, and detected the expression of NLRP3, Cleaved Caspase-1, IL-6 and IL-1ß in FLS by WB. RESULT: When PLCL1 was silenced, the level of IL-6, IL-1ß and CXCL8 were down-regulated. When PLCL1 was overexpressed, the level of IL-6, IL-1ß and CXCL8 were unregulated. The previous results demonstrated that the mechanism of PLCL1 regulating inflammation in FLS was related to NLRP3 inflammasomes. INF39 could counteract the release of inflammatory cytokines caused by overexpression of PLCL1. CONCLUSION: Result showed that the function of PLCL1 in RA FLS might be related to the NLRP3 inflammasomes. We finally confirmed our hypothesis with the NLRP3 inhibitor INF39. Our results suggested that PLCL1 might promote the inflammatory response of RA FLS by regulating the NLRP3 inflammasomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Artrite Reumatoide , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfoinositídeo Fosfolipase C , Sinoviócitos , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação , Interleucina-6/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fosfoinositídeo Fosfolipase C/imunologia , Sinoviócitos/imunologia , Sinoviócitos/patologia
4.
Adv Rheumatol ; 62: 25, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1383510

RESUMO

Abstract Background: Phospholipase C-like 1 (PLCL1), a protein that lacks catalytic activity, has similar structures to the PLC family. The aim of this research was to find the function and underlying mechanisms of PLCL1 in fibroblast-like synoviocyte (FLS) of rheumatoid arthritis (RA). Methods: In this study, we first analyzed the expression of PLCL1 in the synovial tissue of RA patients and K/BxN mice by immunohistochemical staining. Then silencing or overexpressing PLCL1 in FLS before stimulating by TNF-α. The levels of IL-6, IL-1β and CXCL8 in FLS and supernatants were detected by Western Blot (WB), Real-Time Quantitative PCR and Enzyme Linked Immunosorbent Assay. We used INF39 to specifically inhibit the activation of NLRP3 inflammasomes, and detected the expression of NLRP3, Cleaved Caspase-1, IL-6 and IL-1β in FLS by WB. Result: When PLCL1 was silenced, the level of IL-6, IL-1β and CXCL8 were down-regulated. When PLCL1 was overexpressed, the level of IL-6, IL-1β and CXCL8 were unregulated. The previous results demonstrated that the mechanism of PLCL1 regulating inflammation in FLS was related to NLRP3 inflammasomes. INF39 could counteract the release of inflammatory cytokines caused by overexpression of PLCL1. Conclusion: Result showed that the function of PLCL1 in RA FLS might be related to the NLRP3 inflammasomes. We finally confirmed our hypothesis with the NLRP3 inhibitor INF39. Our results suggested that PLCL1 might promote the inflammatory response of RA FLS by regulating the NLRP3 inflammasomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA