Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 167, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069171

RESUMO

The highly contagious SARS-CoV-2 Omicron subvariants severely attenuated the effectiveness of currently licensed SARS-CoV-2 vaccines based on ancestral strains administered via intramuscular injection. In this study, we generated a recombinant, replication-incompetent human adenovirus type 5, Ad5-S-Omicron, that expresses Omicron BA.1 spike. Intranasal, but not intramuscular vaccination, elicited spike-specific respiratory mucosal IgA and residential T cell immune responses, in addition to systemic neutralizing antibodies and T cell immune responses against most Omicron subvariants. We tested intranasal Ad5-S-Omicron as a heterologous booster in mice that previously received intramuscular injection of inactivated ancestral vaccine. In addition to inducing serum broadly neutralizing antibodies, there was a significant induction of respiratory mucosal IgA and neutralizing activities against Omicron subvariants BA.1, BA.2, BA.5, BA.2.75, BF.7 as well as pre-Omicron strains Wildtype, Beta, and Delta. Serum and mucosal neutralizing activities against recently emerged XBB, BQ.1, and BQ.1.1 could also be detected but were much lower. Nasal lavage fluids from intranasal vaccination contained multimeric IgA that can bind to at least 10 spike proteins, including Omicron subvariants and pre-Omicron strains, and possessed broadly neutralizing activities. Intranasal vaccination using Ad5-S-Omicron or instillation of intranasal vaccinee's nasal lavage fluids in mouse nostrils protected mice against Omicron challenge. Taken together, intranasal Ad5-S-Omicron booster on the basis of ancestral vaccines can establish effective mucosal and systemic immunity against Omicron subvariants and multiple SARS-CoV-2 variants. This candidate vaccine warrants further development as a safe, effective, and user-friendly infection and transmission-blocking vaccine.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Camundongos , SARS-CoV-2 , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Imunoglobulina A
2.
Nat Commun ; 11(1): 4207, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826924

RESUMO

The rapid spread of coronavirus SARS-CoV-2 greatly threatens global public health but no prophylactic vaccine is available. Here, we report the generation of a replication-incompetent recombinant serotype 5 adenovirus, Ad5-S-nb2, carrying a codon-optimized gene encoding Spike protein (S). In mice and rhesus macaques, intramuscular injection with Ad5-S-nb2 elicits systemic S-specific antibody and cell-mediated immune (CMI) responses. Intranasal inoculation elicits both systemic and pulmonary antibody responses but weaker CMI response. At 30 days after a single vaccination with Ad5-S-nb2 either intramuscularly or intranasally, macaques are protected against SARS-CoV-2 challenge. A subsequent challenge reveals that macaques vaccinated with a 10-fold lower vaccine dosage (1 × 1010 viral particles) are also protected, demonstrating the effectiveness of Ad5-S-nb2 and the possibility of offering more vaccine dosages within a shorter timeframe. Thus, Ad5-S-nb2 is a promising candidate vaccine and warrants further clinical evaluation.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/administração & dosagem , Adenoviridae/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Relação Dose-Resposta Imunológica , Feminino , Células HEK293 , Humanos , Imunidade Celular , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Viral/imunologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/administração & dosagem
3.
Front Immunol ; 10: 2426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681312

RESUMO

Rhesus macaques (Macaca mulatta) are used as a human-relevant animal species for the evaluation of vaccines and as a source for cloning monoclonal antibodies (mAbs) that are highly similar to human-derived antibodies. Although antibody-secreting plasmablasts in humans are well-defined and can be easily isolated for mAb cloning, it remains unclear whether the same phenotypic markers could be applied for isolating antibody-secreting plasmablasts from Chinese rhesus macaques. In this study, we evaluated a series of cell surface and intracellular markers and identified the phenotypic markers of plasmablasts in Chinese rhesus macaques as CD3-CD14-CD56-CD19-CD27-CD20-/lowCD80+HLA-DR+CD95+. After influenza virus vaccination, the plasmablasts in peripheral blood mononuclear cells (PBMCs) increased transiently, peaked at day 4-7 after booster vaccination and returned to nearly undetectable levels by day 14. Antigen-specific enzyme-linked immunosorbent spot (ELISPOT) assays confirmed that the majority of the plasmablasts could produce influenza virus-specific antibodies. These plasmablasts showed transcriptional characteristics similar to those of human plasmablasts. Using single-cell PCR for immunoglobulin heavy and light chains, most mAbs cloned from the CD3-CD14-CD56-CD19-CD27-CD20-/lowCD80+HLA-DR+CD95+ plasmablasts after vaccination exhibited specific binding to influenza virus. This study defined the phenotypic markers for isolating antibody-secreting plasmablasts from Chinese rhesus macaques, which has implications for efficient cloning of mAbs and for the evaluation of plasmablast response after vaccination or infection in Chinese rhesus macaques.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Clonagem Molecular , Macaca mulatta , Fenótipo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Animais , Especificidade de Anticorpos/genética , Antígenos CD19/metabolismo , Biologia Computacional , ELISPOT , Imunoglobulina G/imunologia , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Análise de Célula Única , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Vacinação
4.
Emerg Microbes Infect ; 8(1): 749-759, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130109

RESUMO

The Zika virus (ZIKV) outbreak and its link to microcephaly triggered a public health concern. To examine antibody response in a patient infected with ZIKV, we used single-cell PCR to clone 31 heavy and light chain-paired monoclonal antibodies (mAbs) that bind to ZIKV envelope (E) proteins isolated from memory B cells of a ZIKV-infected patient. Three mAbs (7B3, 1C11, and 6A6) that showed the most potent and broad neutralization activities against the African, Asian, and American strains were selected for further analysis. mAb 7B3 showed an IC50 value of 11.6 ng/mL against the circulating American strain GZ02. Epitope mapping revealed that mAbs 7B3 and 1C11 targeted residue K394 of the lateral ridge (LR) epitope of the EDIII domain, but 7B3 has a broader LR epitope footprint and recognizes residues T335, G337, E370, and N371 as well. mAb 6A6 recognized residues D67, K118, and K251 of the EDII domain. Interestingly, although the patient was seronegative for DENV infection, mAb 1C11, originating from the VH3-23 and VK1-5 germline pair, neutralized both ZIKV and DENV1. Administration of the mAbs 7B3, 1C11, and 6A6 protected neonatal SCID mice infected with a lethal dose of ZIKV. This study provides potential therapeutic antibody candidates and insights into the antibody response after ZIKV infection.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Imunização Passiva , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Adulto , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , China , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/isolamento & purificação , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos SCID , Testes de Neutralização , Análise de Sobrevida , Resultado do Tratamento , Infecção por Zika virus/imunologia
5.
NPJ Vaccines ; 3: 29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30062066

RESUMO

Current design of Zika virus (ZIKV) vaccine mainly considered envelope (E) as the major target antigen. Non-structural protein NS1 was seldom considered. Herein, we generated three adenovirus-vectored vaccines carrying E (Ad2-E), or premembrane/membrane (prM/M) with E (Ad2-prME), or NS1 in addition to prM/M with E (Ad2-prME-NS1). Ad2-prME induced higher neutralizing antibody response to ZIKV than Ad2-E, suggesting prM/M is important for the folding of immunogenic E. Most intriguingly, Ad2-prME-NS1 elicited the best viral inhibition when the immune sera were added to ZIKV-infected cells. In ZIKV-challenged neonatal mice born to maternally immunized dams, Ad2-prME-NS1 conferred the best protection in preventing weight loss, neurological disorders, and viral replication. Ad2-prME also conferred significant protection but was less effective than Ad2-prME-NS1, whereas Ad2-E only alleviated neurological symptoms but did not inhibit viral replication. Our study suggested that NS1 should be considered in the design of ZIKV vaccine in addition to prM/M and E.

6.
Vaccine ; 34(37): 4392-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27449079

RESUMO

Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV.


Assuntos
Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Doenças do Cão/prevenção & controle , Glicoproteínas/imunologia , Infecções por Parvoviridae/veterinária , Vacina Antirrábica/imunologia , Raiva/veterinária , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Gatos , Linhagem Celular , Doenças do Cão/virologia , Cães , Imunogenicidade da Vacina , Camundongos , Infecções por Parvoviridae/prevenção & controle , Parvovirus Canino , Vacinas Combinadas/imunologia , Vacinas Sintéticas/imunologia , Vírion/imunologia
7.
Hum Vaccin Immunother ; 11(7): 1803-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076321

RESUMO

Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4(+) T and CD8(+) T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens.


Assuntos
Adenoviridae/genética , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Administração Oral , Animais , Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Vetores Genéticos , Imunidade Celular , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas Sintéticas/administração & dosagem
8.
PLoS One ; 9(2): e87105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498294

RESUMO

The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines.


Assuntos
Doenças do Cão/imunologia , Glicoproteínas/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/imunologia , Proteínas Virais/imunologia , Animais , Animais Lactentes , Anticorpos Antivirais/imunologia , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Doenças do Cão/virologia , Cães , Feminino , Regulação Viral da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Imunização , Camundongos , Raiva/veterinária , Raiva/virologia , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Vacinas de Produtos Inativados/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética , Virulência/imunologia
9.
Arch Virol ; 158(11): 2297-305, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23744308

RESUMO

Rabies virus (RABV) is a single-stranded, negative-sense RNA virus that causes a fatal neurological disease in humans and animals. Our previous studies have shown that lab-adapted, but not wild-type (wt), RABV enhances innate immune responses including type I interferon (IFN) and chemokines. To determine if treatment with type I IFN can inhibit RABV infection, mouse neuroblastoma and baby hamster kidney cells were treated with IFN-α before being infected with lab-adapted or wt RABV. It was found that lab-adapted, but not the wt, RABV was able to replicate in IFN-α-pretreated cells. To determine the genes in wt RABV that confer sensitivity to IFN-α treatment, the P and the glycoprotein (G) genes from the wt RABV were used to replace the respective genes in the lab-adapted RABV. The results revealed that it is the P, not the G, gene that is associated with IFN sensitivity. Further studies have identified the regions containing the self-association domain (residues 59-139) and the C-terminal (residue 175-297) region on the P that might be associated with IFN sensitivity. The expression of ISGs, such as ISG15, ISG56, PKR, OAS-1G, was also investigated and found to be greatly increased in wt, but not in lab-adapted RABV-infected cells. It is possible that the P protein from the lab-adapted RABV can interfere with the downstream events in the interferon-signaling cascade.


Assuntos
Interferon Tipo I/uso terapêutico , Interferon-alfa/uso terapêutico , Fosfoproteínas/metabolismo , Vírus da Raiva/imunologia , Raiva/imunologia , Proteínas Estruturais Virais/metabolismo , Animais , Linhagem Celular , Cricetinae , Humanos , Interferon Tipo I/imunologia , Interferon-alfa/imunologia , Camundongos , Chaperonas Moleculares , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Raiva/virologia , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA