Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Bioact Mater ; 37: 315-330, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38694764

RESUMO

Cancer vaccination holds great promise for cancer treatment, but its effectiveness is hindered by suboptimal activation of CD8+ cytotoxic T lymphocytes, which are potent effectors to mediate anti-tumor immune responses. A possible solution is to switch antigen-presenting cells to present tumor antigens via the major histocompatibility complex class I (MHC-I) to CD8+ T cells - a process known as cross-presentation. To achieve this goal, we develop a three-dimensional (3D) scaffold vaccine to promote antigen cross-presentation by persisted toll-like receptor-2 (TLR2) activation after one injection. This vaccine comprises polysaccharide frameworks that "hook" TLR2 agonist (acGM) via tunable hydrophobic interactions and forms a 3D macroporous scaffold via click chemistry upon subcutaneous injection. Its retention-and-release of acGM enables sustained TLR2 activation in abundantly recruited dendritic cells in situ, inducing intracellular production of reactive oxygen species (ROS) in optimal kinetics that crucially promotes efficient antigen cross-presentation. The scaffold loaded with model antigen ovalbumin (OVA) or tumor specific antigen can generate potent immune responses against lung metastasis in B16-OVA-innoculated wild-type mice or spontaneous colorectal cancer in transgenic ApcMin/+ mice, respectively. Notably, it requires neither additional adjuvants nor external stimulation to function and can be adjusted to accommodate different antigens. The developed scaffold vaccine may represent a new, competent tool for next-generation personalized cancer vaccination.

2.
Horm Metab Res ; 55(10): 692-700, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385295

RESUMO

Malnutrition is a risk factor of adverse clinical outcome in patients with cancer. Recent studies suggest that geriatric nutritional risk index (GNRI) could reflect the nutritional status in patients with various clinical conditions. The aim of the systematic review and meta-analysis was to evaluate the association between GNRI and survival of patients with hepatocellular carcinoma (HCC). Observational studies evaluating the association between pretreatment GNRI and survival of patients with HCC were obtained by search of PubMed, Web of Science, Embase, Wanfang, and CNKI databases. A random-effects model was used to pool the results after incorporating the potential influence of heterogeneity. Seven cohort studies including 2636 patients with HCC contributed to the meta-analysis. Pooled results showed that HCC patients with low pretreatment GNRI were associated with poor overall survival [hazard ratio (HR): 1.77, 95% confidence interval (CI): 1.32 to 2.37, p<0.001; I2=66%) and progression-free survival (HR: 1.62, 95% CI: 1.39 to 1.89, p<0.001; I2=0%) as compared to those with normal GNRI. Sensitivity analyses by excluding one study at a time showed similar results (p all<0.05). Subgroup analyses showed that the association between low pretreatment GNRI and poor survival of patients with HCC was not significantly affected by age of the patients, main treatment, cutoff of GNRI, or the follow-up durations. In conclusion, malnutrition indicated by a low pretreatment GNRI may be a risk factor of poor survival of patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Desnutrição , Humanos , Idoso , Avaliação Nutricional , Medição de Risco , Prognóstico , Estado Nutricional , Desnutrição/complicações , Fatores de Risco , Avaliação Geriátrica/métodos , Estudos Retrospectivos
3.
EMBO Mol Med ; 15(2): e16671, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36541165

RESUMO

Nonhealing diabetic wounds, with persistent inflammation and damaged vasculature, have failed conventional treatments and require comprehensive interference. Here, inspired by tumor-associated macrophages (TAMs) that produce abundant immunosuppressive and proliferative factors in tumor development, we generate macrophages to recapitulate TAMs' reparative functions, by culturing normal macrophages with TAMs' conditional medium (TAMs-CM). These TAMs-educated macrophages (TAMEMs) outperform major macrophage phenotypes (M0, M1, or M2) in suppressing inflammation, stimulating angiogenesis, and activating fibroblasts in vitro. When delivered to skin wounds in diabetic mice, TAMEMs efficiently promote healing. Based on TAMs-CM's composition, we further reconstitute a nine-factor cocktail to train human primary monocytes into TAMEMsC-h , which fully resemble TAMEMs' functions without using tumor components, thereby having increased safety and enabling the preparation of autologous cells. Our study demonstrates that recapitulating TAMs' unique reparative activities in nontumor cells can lead to an effective cell therapeutic approach with high translational potential for regenerative medicine.


Assuntos
Diabetes Mellitus Experimental , Neoplasias , Humanos , Camundongos , Animais , Macrófagos Associados a Tumor , Macrófagos/patologia , Cicatrização , Neoplasias/patologia , Inflamação/patologia
4.
Front Genet ; 13: 922472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991576

RESUMO

Anillin actin-binding protein (ANLN) is crucially involved in cell proliferation and migration. Moreover, ANLN is significantly in tumor progression in several types of human malignant tumors; however, it remains unclear whether ANLN acts through common molecular pathways within different tumor microenvironments, pathogeneses, prognoses and immunotherapy contexts. Therefore, this study aimed to perform bioinformatics analysis to examine the correlation of ANLN with tumor immune infiltration, immune evasion, tumor progression, immunotherapy, and tumor prognosis. We observed increased ANLN expression in multiple tumors, which could be involved in tumor cell proliferation, migration, infiltration, and prognosis. The level of ANLN methylation and genetic alteration was associated with prognosis in numerous tumors. ANLN facilitates tumor immune evasion through different mechanisms, which involve T-cell exclusion in different cancer types and tumor-infiltrating immune cells in colon adenocarcinoma, kidney renal clear cell carcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma. Additionally, ANLN is correlated with immune or chemotherapeutic outcomes in malignant cancers. Notably, ANLN expression may be a predictive biomarker for the response to immune checkpoint inhibitors. Taken together, our findings suggest that ANLN can be used as an onco-immunological biomarker and could serve as a hallmark for tumor screening, prognosis, individualized treatment design, and follow-up.

5.
Medicine (Baltimore) ; 99(48): e23339, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33235099

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor associated with a high recurrence rate after hepatectomy. Recently, preoperative inflammatory and liver function reserve indices were found to predict increased risk of recurrence and decreased survival in HCC patients. This study aims to evaluate the ability of the γ-glutamyl transpeptidase-to-albumin ratio (GAR) and aspartate aminotransferase-to-lymphocyte ratio (ALRI), individually and in combination, to predict the prognosis of HCC patients after hepatectomy.We retrospectively reviewed 206 HCC patients who underwent radical resection at the General Hospital of Ningxia Medical University from January 2011 to November 2016. Receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cut-off value for GAR and ALRI. The Pearson Chi-Squared test was used to analyze the correlations between GAR, ALRI and clinicopathological characteristics. Univariate and multivariate analyses were used to determine the predictive value of these factors for disease-free survival (DFS) and overall survival (OS). Survival rates were drawn according to the Kaplan-Meier method and differences between subgroups were compared by the log-rank statistics.GAR and ALRI were significantly correlated with gender, history of smoking, prothrombin time, tumor diameter, T stage and early intrahepatic recurrence by the Pearson Chi-Squared test (all P < .05). Univariate analysis indicated that T stage, GAR and ALRI were significantly correlated with DFS and OS in HCC patients after hepatectomy. Multivariate analysis illustrated that GAR and ALRI were independently related to DFS and OS in HCC patients. Preoperative GAR > 0.946 or ALRI > 18.734 predicted poor prognosis in HCC patients after hepatectomy. Additionally, the predictive scope of GAR combined with ALRI was more sensitive than that of either individual measurement alone.Our data indicate that there is a close association between the clinicopathological characteristics in HCC patients and increased GAR or ALRI. Higher levels of GAR and ALRI could sensitively and specifically predict a poor prognosis in HCC patients after hepatectomy. Furthermore, combined usage of GAR and ALRI could improve the accuracy of this prediction.


Assuntos
Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/epidemiologia , Aspartato Aminotransferases/sangue , Biomarcadores , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/mortalidade , Feminino , Hepatectomia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/mortalidade , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Prognóstico , Curva ROC , Estudos Retrospectivos , Albumina Sérica/análise , Fatores Sexuais , Fumar/epidemiologia , gama-Glutamiltransferase/sangue
6.
Proc Natl Acad Sci U S A ; 117(31): 18459-18469, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694211

RESUMO

Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Associadas a Diversas Atividades Celulares/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Nat Commun ; 11(1): 3324, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620829

RESUMO

Light elements in the interstitial site of transition metals have strong influence on heterogeneous catalysis via either expression of surface structures or even direct participation into reaction. Interstitial atoms are generally metastable with a strong environmental dependence, setting up giant challenges in controlling of heterogeneous catalysis. Herein, we show that the desired carbon atoms can be manipulated within nickel (Ni) lattice for improving the selectivity in acetylene hydrogenation reaction. The radius of octahedral space of Ni is expanded from 0.517 to 0.524 Å via formation of Ni3Zn, affording the dissociated carbon atoms to readily dissolve and diffuse at mild temperatures. Such incorporated carbon atoms coordinate with the surrounding Ni atoms for generation of Ni3ZnC0.7 and thereof inhibit the formation of subsurface hydrogen structures. Thus, the selectivity and stability are dramatically improved, as it enables suppressing the pathway of ethylene hydrogenation and restraining the accumulation of carbonaceous species on surface.

8.
Sci Adv ; 6(24): eaaz9974, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32577515

RESUMO

Regenerating human organs remains an unmet medical challenge. Suitable transplants are scarce, while engineered tissues have a long way to go toward clinical use. Here, we demonstrate a different strategy that successfully transformed an existing, functionally dispensable organ to regenerate another functionally vital one in the body. Specifically, we injected a tumor extract into the mouse spleen to remodel its tissue structure into an immunosuppressive and proregenerative microenvironment. We implanted autologous, allogeneic, or xenogeneic liver cells (either primary or immortalized), which survived and proliferated in the remodeled spleen, without exerting adverse responses. Notably, the allografted primary liver cells exerted typical hepatic functions to rescue the host mice from severe liver damages including 90% hepatectomy. Our approach shows its competence in overcoming the key challenges in tissue regeneration, including insufficient transplants, immune rejection, and poor vascularization. It may be ready for translation into new therapies to regenerate large, complex human tissue/organs.

9.
Acta Biomater ; 111: 153-169, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32447062

RESUMO

Scaffolds for tissue repair are designed in an increasingly complicated manner to meet multi-facet biological needs during the healing process. However, overly sophisticated design, especially the use of multiple components and delivery of exogenous cells, hampers the bench-to-bedside translation. Here, a multi-functional - yet mono-compositional - bioactive scaffold is devised to mediate the full-range, endogenous bone repair. Based on immunoactivity screening, a chemically-modified glucomannan polysaccharide is selected and processed into an anisotropic porous scaffold, which accurately stimulates macrophages to produce pro-regenerative cytokines. These cytokines effectively enhance the recruitment ("R") and induced osteogenesis ("IO") of the bone progenitor cells in situ. Meanwhile, the anisotropic porosity and carbohydrate signal of the scaffold facilitate differential adhesion ("A") and distribution ("D") of the macrophages and bone progenitor cells - enabling the former's accumulation at the surface while encouraging the latter's infiltration into the scaffold. Implanted in a rat calvarial defect model, this "RADIO" system effectively promotes healing over 12 weeks, with the obvious formation of hard callus through the scaffold. In summary, RADIO integrates multiple functions into one single scalable system ("all-in-one") to govern the dynamic bone-repair process, by harnessing the power of host macrophages. RADIO represents an open platform to solving the long-lasting complexity-versus-simplicity dilemma in biomaterials design. STATEMENT OF SIGNIFICANCE: Biomaterials as versatile tools for tissue repair are becoming increasingly complicated, yet overly sophisticated design - especially the use of multiple components, exogenous cells, and overdosed growth factors - hampers their clinical application. The pre-requisite for designing a successful integrative scaffold is to identify an inherent biological target responding to biomaterial signals, thereby efficiently and safely promoting tissue repair via the endogenous healing capability instead of extra multifarious biochemical components. For bone regeneration, the pivotal regulator is macrophages. Through activating host macrophages, our single-component scaffold system coordinates the entire bone regenerative cascade in situ and induces successful bone regeneration in a calvarial defect model. This scaffold represents a scalable and multi-functional approach to effectively simplify the sophisticated design in regenerative medicine.


Assuntos
Osteogênese , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Regeneração Óssea , Macrófagos , Ratos
10.
Int J Biol Macromol ; 155: 911-918, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712154

RESUMO

Mesenchymal stem cell (MSC) delivery has been broadly investigated as a cell-based therapy strategy towards various diseases and tissue injury. In these applications, the cell-delivery vehicle plays a crucial role in determining the therapeutic performance of MSCs and their fate post-implantation. We report here the development of a microcarrier system combining platelet-derived growth factor-BB (PDGF-BB) and a PDGF-BB-binding polysaccharide - Eucommia ulmoides (EUP3) - for MSC cultivation. First, we investigated the optimal conditions to prepare the EUP3-PDGF-BB complex, by comparing its i) diameter, ii) morphology, and iii) bioactivity to promote MSC proliferation and fibroblast migration in vitro, under different PDGF-BB/EUP3 ratios. Then, we fabricated microspheres using gelatin and EUP3 as the matrix while stabilizing PDGF-BB at the optimal ratio for MSC adhesion and growth. Live staining and SEM observation indicated that the prepared microspheric carrier supported MSC growth and maintained cell stemness. We suggest that the EUP3/PDGF-gelatin microcarriers can potentially serve as a cell-delivery vehicle for tissue engineering.


Assuntos
Becaplermina , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Eucommiaceae/química , Gelatina/química , Células-Tronco Mesenquimais/citologia , Polissacarídeos , Animais , Becaplermina/química , Becaplermina/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Fibroblastos , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacologia , Suínos , Engenharia Tecidual
11.
Adv Drug Deliv Rev ; 146: 190-208, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879493

RESUMO

Growth factors (GFs) are versatile signalling molecules that orchestrate the dynamic, multi-stage process of wound healing. Delivery of exogenous GFs to the wound milieu to mediate healing in an active, physiologically-relevant manner has shown great promise in laboratories; however, the inherent instability of GFs, accompanied with numerous safety, efficacy and cost concerns, has hindered the clinical success of GF delivery. In this article, we highlight that the key to overcoming these challenges is to enhance the control of the activities of GFs throughout the delivering process. We summarise the recent strategies based on biomaterials matrices and molecular engineering, which aim to improve the conditions of GFs for delivery (at the 'supply' end of the delivery), increase the stability and functions of GFs in extracellular matrix (in transportation to target cells), as well as enhance the GFs/receptor interaction on the cell membrane (at the 'destination' end of the delivery). Many of these investigations have led to encouraging outcomes in various in vitro and in vivo regenerative models with considerable translational potential.


Assuntos
Bioengenharia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cicatrização , Animais , Humanos
12.
J Am Chem Soc ; 140(36): 11241-11251, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30016862

RESUMO

The mechanism on interfacial synergistic catalysis for supported metal catalysts has long been explored and investigated in several important heterogeneous catalytic processes (e.g., water-gas shift (WGS) reaction). The modulation of metal-support interactions imposes a substantial influence on activity and selectivity of catalytic reaction, as a result of the geometric/electronic structure of interfacial sites. Although great efforts have validated the key role of interfacial sites in WGS over metal catalysts supported on reducible oxides, direct evidence at the atomic level is lacking and the mechanism of interfacial synergistic catalysis is still ambiguous. Herein, Ni nanoparticles supported on TiO2- x (denoted as Ni@TiO2- x) were fabricated via a structure topotactic transformation of NiTi-layered double hydroxide (NiTi-LDHs) precursor, which showed excellent catalytic performance for WGS reaction. In situ microscopy was carried out to reveal the partially encapsulated structure of Ni@TiO2- x catalyst. A combination study including in situ and operando EXAFS, in situ DRIFTS spectra combined with TPSR measurements substantiates a new redox mechanism based on interfacial synergistic catalysis. Notably, interfacial Ni species (electron-enriched Niδ- site) participates in the dissociation of H2O molecule to generate H2, accompanied by the oxidation of Niδ--O v-Ti3+ (O v: oxygen vacancy) to Niδ+-O-Ti4+ structure. Density functional theory calculations further verify that the interfacial sites of Ni@TiO2- x catalyst serve as the optimal active site with the lowest activation energy barrier (∼0.35 eV) for water dissociation. This work provides a fundamental understanding on interfacial synergistic catalysis toward WGS reaction, which is constructive for the rational design and fabrication of high activity heterogeneous catalysts.

13.
Nanoscale ; 9(38): 14317-14321, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28944384

RESUMO

Developing highly selective and stable catalysts for acetylene hydrogenation is an imperative task in the chemical industry. Herein, core-shell Pd@carbon nanoparticles supported on carbon nanotubes (Pd@C/CNTs) were synthesized. During the hydrogenation of acetylene, the selectivity of Pd@C/CNTs to ethylene was distinctly improved. Moreover, Pd@C/CNTs showed excellent stability during the hydrogenation reaction.

14.
Biomaterials ; 139: 39-55, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28582717

RESUMO

The biomaterials-host interaction is a dynamic process in which macrophages play a vital role of regulation. Depending on the biochemical signals they sense, these highly plastic cells can mediate the immune response against the implanted scaffolds and/or exert regenerative potency to varying extent. Designing appropriate 'exterior signals' for scaffolds may exploit the power of endogenous macrophages to aid the regeneration of engineered tissues. To realise this goal, this study devised an injectable, instantaneously-solidifying coating material (acBSP) based on a unique, macrophage-affinitive glucomannan polysaccharide. Coating of three-dimensional hydrogel constructs with acBSP was rapid, neat and complete, requiring neither chemical reactions nor harsh conditions. Comprehensive in vitro analyses indicated that acBSP efficiently facilitated the adhesion and activation of macrophages and notably induced the macrophages to express pro-osteogenic/-angiogenic genes. Further in vivo assessment of acBSP-coated, mesenchymal stem cells-laden hydrogels in a murine dorsal subcutaneous pocket model demonstrated efficient macrophage activation, desirable scaffold-tissue integration and improved osteogenic differentiation in the delivered cells. In summary, by activating macrophages into a pro-osteogenic phenotype, the acBSP coating has demonstrated its competency as an innovative, open and efficacious platform to harness the power of host immunity for enhancing the regenerative performance of engineered tissue constructs.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Mananas/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Acetilação , Análise de Variância , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Animais , Diferenciação Celular , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Imunidade Inata/genética , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mananas/química , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais/química , Transcriptoma/imunologia
15.
Biomaterials ; 134: 128-142, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28460335

RESUMO

Biomaterials scaffolds designed for many regenerative applications are expected to support neo-vascularisation, which is now being hampered by two limitations - the instability of exogenous growth factors (GFs) that are delivered to promote angiogenesis; and the loss of extracellular matrix components that bind and stabilise GFs. Here, we report the design and evaluation of an injectable hydrogel system aimed at restoring a GF-binding microenvironment to enhance the pro-angiogenic functions of endogenous GFs. This gel comprises two polysaccharides with their unique bioactivities: Konjac glucomannan (KGM) as the building block of the gel scaffold, for its demonstrated capacity to activate macrophages/monocytes to secrete pro-angiogenic/-mitogenic GFs; and heparin (Hep), a representative glycosaminoglycan molecule that binds numerous pro-angiogenic GFs, as functional moieties to sequester the macrophage-produced GFs. Modified with tyramine (TA) groups, the two polysaccharides can be co-polymerised and rapidly form into hydrogel upon enzyme catalysis. The designed KGM-TA/Hep-TA hydrogel successfully preserves the macrophage-activating function and GF-binding affinity of the two components, respectively, and, once subcutaneously implanted, effectively sequestered the locally-produced GFs in situ and promote the formation and maturation of blood vessels in mice. In summary, the designed hydrogel system demonstrates a feasible approach to stimulate the production and harness the function of endogenous GFs for inducing blood vessel formation in vivo, without the addition of any exogenous proteins. This design may provide an innovative, open platform to promote vascularisation for various regenerative purposes.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/metabolismo , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Animais , Glicosaminoglicanos/metabolismo , Humanos , Integrina beta1/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Mananas/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Polissacarídeos/metabolismo , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo , Células THP-1
16.
Sci Rep ; 6: 24506, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27074905

RESUMO

Our evolving understandings of cell-material interactions provide insights for using polymers to modulate cell behaviour that may lead to therapeutic applications. It is known that in certain cancers, myeloid-derived suppressor cells (MDSCs) play vital roles in promoting tumour progression, chiefly because of their 'alternatively activated' (or M2) phenotype that orchestrates immunosuppression. In this study, we demonstrated that two cationic polymers - cationic dextran (C-dextran) and polyethyleneimine (PEI) - could directly remodel these cells into an anti-tumour, 'classically activated' (or M1) phenotype, thereby stimulating these cells to express tumouricidal cytokines, reactivating the T cell functions, and prolonging the lifespan of the mice model. Our investigations with knock-out mice further indicate that the functions of these cationic polymers require the involvement of toll-like receptor 4-mediated signalling. Taken together, our study suggests that these cationic polymers can effectively and directly re-polarize MDSCs from an immunosuppressive characteristic to an anti-tumour phenotype, leading to successful restoration of immune surveillance in the tumour microenvironment and elimination of tumour cells. Our findings may have immediate impact on further development of polymer-based therapeutics for cancer immunotherapy.


Assuntos
Cátions/metabolismo , Dextranos/metabolismo , Imunoterapia/métodos , Neoplasias Mamárias Animais/terapia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/fisiologia , Polietilenoimina/metabolismo , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sobrevida , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Resultado do Tratamento
17.
Biomaterials ; 35(38): 10046-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245263

RESUMO

Tumour-associated macrophages (TAMs) are a set of macrophages residing in the tumour microenvironment. They play essential roles in mediating tumour angiogenesis, metastasis and immune evasion. Delivery of therapeutic agents to eliminate TAMs can be a promising strategy for cancer immunotherapy but an efficient vehicle to target these cells is still in pressing need. In this study, we developed a bisphosphonate-glucomannan conjugate that could efficiently target and specifically eliminate TAMs in the tumour microenvironment. We employed the polysaccharide from Bletilla striata (BSP), a glucomannan affinitive for macrophages that express abundant mannose receptors, to conjugate alendronate (ALN), a bisphosphonate compound with in vitro macrophage-inhibiting activities. In both in vitro and in vivo tests, the prepared ALN-BSP conjugate could preferentially accumulate in macrophages and induced them into apoptosis. In the subcutaneous S180 tumour-bearing mice model, the treatment using ALN-BSP effectively eliminated TAMs, remarkably inhibited angiogenesis, recovered local immune surveillance, and eventually suppressed tumour progression, without eliciting any unwanted effect such as systematic immune response. Interestingly, ALN alone failed to exhibit any anti-TAM activity in vivo, probably because this compound was susceptible to the mildly acidic tumour microenvironment. Taken together, these results demonstrate the potential of ALN-BSP as a safe and efficient tool targeted at direct depletion of TAMs for cancer immunotherapy.


Assuntos
Alendronato/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Macrófagos/imunologia , Mananas/administração & dosagem , Nanocápsulas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular Tumoral , Feminino , Macrófagos/efeitos dos fármacos , Camundongos , Nanocápsulas/ultraestrutura , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
18.
Mol Pharm ; 11(7): 2022-9, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24533867

RESUMO

Development of new, antimetastatic drugs from natural products has been substantially constrained by the lack of a reliable in vitro screening system. Such a system should ideally mimic the native, three-dimensional (3D) tumor microenvironment involving different cell types and allow quantitative analysis of cell behavior critical for metastasis. These requirements are largely unmet in the current model systems, leading to poor predictability of the in vitro collected data for in vivo trials, as well as prevailing inconsistency among different in vitro tests. In the present study, we report application of a 3D, microfluidic device for validation of the antimetastatic effects of 12 natural compounds. This system supports co-culture of endothelial and cancer cells in their native 3D morphology as in the tumor microenvironment and provides real-time monitoring of the cells treated with each compound. We found that three compounds, namely sanguinarine, nitidine, and resveratrol, exhibited significant antimetastatic or antiangiogenic effects. Each compound was further examined for its respective activity with separate conventional biological assays, and the outcomes were in agreement with the findings collected from the microfluidic system. In summary, we recommend use of this biomimetic model system as a new engineering tool for high-throughput evaluation of more diverse natural compounds with varying anticancer potentials.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Biomimética/métodos , Microfluídica/métodos , Benzofenantridinas/farmacologia , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células Endoteliais/efeitos dos fármacos , Humanos , Isoquinolinas/farmacologia , Dispositivos Lab-On-A-Chip/métodos , Modelos Biológicos , Resveratrol , Estilbenos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
19.
PLoS One ; 7(10): e46698, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056408

RESUMO

Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i) myoblast survival by limiting their massive death, ii) myoblast expansion within the tissue and iii) myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.


Assuntos
Macrófagos/citologia , Músculo Esquelético/citologia , Distrofias Musculares/terapia , Mioblastos/citologia , Animais , Western Blotting , Movimento Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Exp Biol Med (Maywood) ; 233(9): 1142-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18535164

RESUMO

Impaired glucose metabolism is implicated in cardiac failure during ischemia-reperfusion. This study examined cardiac glucose uptake and expression of glucose transport-4 (GLUT-4) in dogs undergoing ischemia-reperfusion. Cardiac ischemia was induced by cardiopulmonary bypass for 30 min or 120 min in dogs. Plasma insulin and glucose concentrations were measured at pre-bypass (control), and aortic cross-clamp off (ischemia-reperfusion) at 15, 45, and 75 min. At the same time, the left ventricle biopsies were taken for GLUT-4 immunohistochemistry and glycogen content analysis. In dogs receiving 120-min ischemia, coronary arterial and venous glucose concentrations were increased, but the net glucose uptake in ischemia-reperfusion heart were significantly decreased from 25% (control) to zero at 15 and 45 min of reperfusion, and recovered to only 7% after 75 min reperfusion. Myocardium glycogen contents were decreased by 65%. Plasma insulin levels and Insulin Resistant Index were markedly increased in dogs undergoing 120-min ischemia and reperfusion. These changes were relatively mild and reversible in dogs receiving only 30-min ischemia followed by reperfusion. Expression of total GLUT-4 in myocardium was decreased 40% and translocation of GLUT-4 from cytoplasm to surface membrane was decreased 90% in dogs receiving 120-min ischemia followed by 15-min reperfusion. Suppressed translocation of GLUT-4 was also evident in dogs receiving 30-min ischemia, but to a lesser extent. Reduced myocardium glucose uptake, utilization, and glycogen content are clearly associated with ischemia-reperfusion heart injury. This appears to be due, at least in part, to suppressed expression and translocation of myocardium GLUT-4.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Biópsia , Cães , Imuno-Histoquímica , Insulina/sangue , Resistência à Insulina , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA