Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 456: 131642, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236101

RESUMO

Sulfamethazine (SMZ) is widely present in the environment and can cause severe allergic reactions and cancer in humans. Accurate and facile monitoring of SMZ is crucial for maintaining environmental safety, ecological balance, and human health. In this work, a real-time and label-free surface plasmon resonance (SPR) sensor was devised using a two-dimensional metal-organic framework with superior photoelectric performance as an SPR sensitizer. The supramolecular probe was incorporated at the sensing interface, allowing for the specific capture of SMZ from other analogous antibiotics through host-guest recognition. The intrinsic mechanism of the specific interaction of the supramolecular probe-SMZ was elucidated through the SPR selectivity test in combination with analysis by density functional theory, including p-π conjugation, size effect, electrostatic interaction, π-π stacking, and hydrophobic interaction. This method facilitates a facile and ultrasensitive detection of SMZ with a limit of detection of 75.54 pM. The accurate detection of SMZ in six environmental samples demonstrates the potential practical application of the sensor. Leveraging the specific recognition of supramolecular probes, this direct and simple approach offers a novel pathway for the development of novel SPR biosensors with outstanding sensitivity.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Humanos , Sulfametazina/química , Técnicas Biossensoriais/métodos , Antibacterianos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA