Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
EBioMedicine ; 103: 105133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677181

RESUMO

BACKGROUND: Endogenous retroelements (EREs), including human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), comprise almost half of the human genome. Our previous studies of the interferome in the gut suggest potential mechanisms regarding how IFNb may drive HIV-1 gut pathogenesis. As ERE activity is suggested to partake in type 1 immune responses and is incredibly sensitive to viral infections, we sought to elucidate underlying interactions between ERE expression and gut dynamics in people living with HIV-1 (PLWH). METHODS: ERE expression profiles from bulk RNA sequencing of colon biopsies and PBMC were compared between a cohort of PLWH not on antiretroviral therapy (ART) and uninfected controls. FINDINGS: 59 EREs were differentially expressed in the colon of PLWH when compared to uninfected controls (padj <0.05 and FC ≤ -1 or ≥ 1) [Wald's Test]. Of these 59, 12 EREs were downregulated in PLWH and 47 were upregulated. Colon expression of the ERE loci LTR19_12p13.31 and L1FLnI_1q23.1s showed significant correlations with certain gut immune cell subset frequencies in the colon. Furthermore L1FLnI_1q23.1s showed a significant upregulation in peripheral blood mononuclear cells (PBMCs) of PLWH when compared to uninfected controls suggesting a common mechanism of differential ERE expression in the colon and PBMC. INTERPRETATION: ERE activity has been largely understudied in genomic characterizations of human pathologies. We show that the activity of certain EREs in the colon of PLWH is deregulated, supporting our hypotheses that their underlying activity could function as (bio)markers and potential mediators of pathogenesis in HIV-1 reservoirs. FUNDING: US NIH grants NCI CA260691 (DFN) and NIAID UM1AI164559 (DFN).


Assuntos
Retrovirus Endógenos , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/genética , HIV-1/genética , Retrovirus Endógenos/genética , Masculino , Feminino , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Adulto , Pessoa de Meia-Idade , Colo/metabolismo , Colo/virologia , Colo/patologia , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Microbioma Gastrointestinal
2.
Nat Rev Mol Cell Biol ; 25(3): 212-222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872387

RESUMO

Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.


Assuntos
Retrovirus Endógenos , Humanos , Retrovirus Endógenos/genética , Carcinogênese/genética
3.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333202

RESUMO

The heterogeneity of cancers are driven by diverse mechanisms underlying oncogenesis such as differential 'cell-of-origin' (COO) progenitors, mutagenesis, and viral infections. Classification of B-cell lymphomas have been defined by considering these characteristics. However, the expression and contribution of transposable elements (TEs) to B cell lymphoma oncogenesis or classification have been overlooked. We hypothesized that incorporating TE signatures would increase the resolution of B-cell identity during healthy and malignant conditions. Here, we present the first comprehensive, locus-specific characterization of TE expression in benign germinal center (GC) B-cells, diffuse large B-cell lymphoma (DLBCL), Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt lymphoma (BL), and follicular lymphoma (FL). Our findings demonstrate unique human endogenous retrovirus (HERV) signatures in the GC and lymphoma subtypes whose activity can be used in combination with gene expression to define B-cell lineage in lymphoid malignancies, highlighting the potential of retrotranscriptomic analyses as a tool in lymphoma classification, diagnosis, and the identification of novel treatment groups.

4.
mBio ; 14(1): e0328022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36645307

RESUMO

Transposable elements (TEs) are mobile genomic sequences that encompass roughly 50% of the human genome. Class 1 TEs, or "retrotransposons," mobilize through the production of an RNA intermediate that is then reverse transcribed to form complementary DNA (cDNA) molecules capable of genomic reinsertion. While TEs are traditionally silenced to maintain genomic integrity, the recognition of immunostimulatory cues, such as those provided by microorganisms, drastically alters host transcription to induce the differential expression of TEs. Emerging evidence demonstrates that the inducible production of TE cDNA is not an inert phenomenon but instead has been coopted by host immunity to facilitate cross talk between host and constituents of the microbiota by agonizing intrinsic antiviral receptors. Here, we demonstrate that immunostimulation of toll-like receptor 4 (TLR4) with lipopolysaccharide (LPS) and TLR5 with bacterial flagella (FLA) alters the expression of retrotransposons, such as human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs). Next, we demonstrate that reverse transcriptase inhibitor (RTi) delivery ameliorates the acute production of the proinflammatory cytokine "tumor necrosis factor alpha" (TNF-α) in response to FLA in a monocytic cell line (THP-1). Collectively, our findings demonstrate that TLR5-mediated cross talk between the host and microbiota is partially dependent on the reverse transcription (RT) of retrotransposons. IMPORTANCE The microbiota is a potent reservoir of immunostimulatory and immunosuppressive motifs that fundamentally shape host immunity. Despite broad associations between microbial composition and host immunity, the mechanisms underlying host microbiota-induced immunoregulation remain poorly defined. Here, we demonstrate a novel mechanism by which motifs overabundant during dysbiotic conditions influence host immunity through the upregulation of endogenous RT to produce motifs that agonize antiviral receptors.


Assuntos
Retrovirus Endógenos , Receptor 5 Toll-Like , Humanos , Retroelementos , DNA Polimerase Dirigida por RNA/genética , DNA Complementar , Inflamação/genética , Antivirais
5.
Front Cell Infect Microbiol ; 12: 1068436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467738

RESUMO

Human Immunodeficiency virus type 1 (HIV-1) relies on host cell metabolism for all aspects of viral replication. Efficient HIV-1 entry, reverse transcription, and integration occurs in activated T cells because HIV-1 proteins co-opt host metabolic pathways to fuel the anabolic requirements of virion production. The HIV-1 viral life cycle is especially dependent on mTOR, which drives signaling and metabolic pathways required for viral entry, replication, and latency. As a central regulator of host cell metabolism, mTOR and its downstream effectors help to regulate the expression of enzymes within the glycolytic and pentose phosphate pathways along with other metabolic pathways regulating amino acid uptake, lipid metabolism, and autophagy. In HIV-1 pathogenesis, mTOR, in addition to HIF-1α and Myc signaling pathways, alter host cell metabolism to create an optimal environment for viral replication. Increased glycolysis and pentose phosphate pathway activity are required in the early stages of the viral life cycle, such as providing sufficient dNTPs for reverse transcription. In later stages, fatty acid synthesis is required for creating cholesterol and membrane lipids required for viral budding. Epigenetics of the provirus fueled by metabolism and mTOR signaling likewise controls active and latent infection. Acetyl-CoA and methyl group abundance, supplied by the TCA cycle and amino acid uptake respectively, may regulate latent infection and reactivation. Thus, understanding and exploring new connections between cellular metabolism and HIV-1 pathogenesis may yield new insights into the latent viral reservoirs and fuel novel treatments and cure strategies.


Assuntos
HIV-1 , Infecção Latente , Humanos , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc , Serina-Treonina Quinases TOR , Replicação Viral , Aminoácidos
6.
Mol Cell ; 82(20): 3763-3768, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270247

RESUMO

Germ cells are subject to exogenous retrovirus infections occasionally resulting in the genomic integration of retroviral gene sequences. These endogenized retroviruses (ERVs) are found throughout mammalian genomes. Initially thought to be inert, it is now appreciated that ERVs have often been co-opted for complex physiological processes. However, unregulated ERV transposition and expression are a threat to cellular fitness and genomic integrity, and so mammalian cells must control ERVs through pre- and post-transcriptional mechanisms. Here, we provide a field guide to the molecular machinery that identifies and silences ERVs.


Assuntos
Retrovirus Endógenos , Infecções por Retroviridae , Animais , Retrovirus Endógenos/genética , Infecções por Retroviridae/genética , Genômica , Mamíferos/genética
7.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35349481

RESUMO

Uveal melanoma (UM) is a unique disease in that patients with primary UM are well stratified based on their risk of developing metastasis, yet there are limited effective treatments once metastases occur. There is an urgent need to better understand the distinct molecular pathogenesis of UM and the characteristics of patients at high risk for metastasis to identify neoantigenic targets that can be used in immunotherapy and to develop novel therapeutic strategies that may effectively target this lethal transition. An important and overlooked area of molecular pathogenesis and neoantigenic targets in UM comes from human endogenous retroviruses (HERVs). We investigated the HERV expression landscape in primary UM and found that tumors were stratified into 4 HERV-based subsets that provide clear delineation of risk outcome and support subtypes identified by other molecular indicators. Specific HERV loci are associated with the risk of uveal melanoma metastasis and may offer mechanistic insights into this process, including dysregulation of HERVs on chromosomes 3 and 8. A HERV signature composed of 17 loci was sufficient to classify tumors according to subtype with greater than 95% accuracy, including at least 1 intergenic HERV with coding potential (HERVE_Xp11.23) that could represent a potential HERV E target for immunotherapy.


Assuntos
Retrovirus Endógenos , Melanoma , Neoplasias Uveais , Retrovirus Endógenos/genética , Humanos , Imunoterapia , Neoplasias Uveais/genética , Neoplasias Uveais/terapia
8.
Clin Transl Immunology ; 10(6): e1292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141432

RESUMO

OBJECTIVES: It remains unknown how inflammatory marker levels differ amongst individuals susceptible to coronavirus disease 2019 (COVID-19), prior to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the onset of the cytokine storm. We used genetic risk scores to model how susceptibility to severe COVID-19 correlates with baseline levels of 35 inflammatory markers, by testing their impact in a SARS-CoV-2-negative population cohort. Because of the established effects of age and body mass index on severe COVID-19 risk, we further considered how these variables interacted with genetic risk to affect inflammatory marker levels. METHODS: We accessed data on 406 SARS-CoV-2-negative individuals as part of a UK population study. Multiplex electrochemiluminescence methods were applied to blood serum, and 35 inflammatory markers were assayed. Corresponding genotype data, alongside results from a large genome-wide association study of severe COVID-19, allowed us to construct genetic risk scores and to test their impact on inflammatory protein levels. RESULTS: Our results revealed that a higher genetic risk for severe COVID-19 was associated with lower blood levels of interferon gamma (IFN-γ), vascular endothelial growth factor D (VEGF-D) and tumor necrosis factor alpha (TNF-α). Inflammatory profiles of those with high genetic risk increasingly diverge from the norm in association with age and obesity. CONCLUSION: Our results support the theory that individuals at risk of severe COVID-19 have a deficient innate immunity marked by reduced levels of inflammatory markers at baseline, including IFN-γ, VEGF-D and TNF-α. We hypothesise that a secondary overactive adaptive immune response may subsequently explain the high levels of cytokines observed in SARS-CoV-2-positive COVID-19 patients.

9.
Cancer Res ; 81(13): 3449-3460, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33941616

RESUMO

Human endogenous retroviruses (HERV) have been implicated in a variety of diseases including cancers. Recent research implicates HERVs in epigenetic gene regulation. Here we utilize a recently developed bioinformatics tool for identifying HERV expression at the locus-specific level to identify differential expression of HERVs in matched tumor-normal RNA-sequencing (RNA-seq) data from The Cancer Genome Atlas. Data from 52 prostate cancer, 111 breast cancer, and 24 colon cancer cases were analyzed. Locus-specific analysis identified active HERV elements and differentially expressed HERVs in prostate cancer, breast cancer, and colon cancer. In addition, differentially expressed host genes were identified across prostate, breast, and colon cancer datasets, respectively, including several involved in demethylation and antiviral response pathways, supporting previous findings regarding the pathogenic mechanisms of HERVs. A majority of differentially expressed HERVs intersected protein coding genes or lncRNAs in each dataset, and a subset of differentially expressed HERVs intersected differentially expressed genes in prostate, breast, and colon cancers, providing evidence towards regulatory function. Finally, patterns in HERV expression were identified in multiple cancer types, with 155 HERVs differentially expressed in all three cancer types. This analysis extends previous results identifying HERV transcription in cancer RNA-seq datasets to a locus-specific level, and in doing so provides a foundation for future studies investigating the functional role of HERV in cancers and identifies a number of novel targets for cancer biomarkers and immunotherapy. SIGNIFICANCE: Expressed human endogenous retroviruses are mapped at locus-specific resolution and linked to specific pathways to identify potential biomarkers and therapeutic targets in prostate, breast, and colon cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias do Colo/genética , Retrovirus Endógenos/genética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Neoplasias da Próstata/genética , Proteínas Virais/genética , Neoplasias da Mama/virologia , Estudos de Casos e Controles , Neoplasias do Colo/virologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/virologia , Análise de Sequência de RNA
10.
Front Oncol ; 10: 553983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194615

RESUMO

In people living with HIV (PLWH), chronic inflammation can lead to cancer initiation and progression, besides driving a dysregulated and diminished immune responsiveness. HIV infection also leads to increased transcription of Human Endogenous Retroviruses (HERVs), which could increase an inflammatory environment and create a tumor growth suppressive environment with high expression of pro-inflammatory cytokines. In order to determine the impact of HIV infection to HERV expression on the breast cancer microenvironment, we sequenced total RNA from formalin-fixed paraffin-embedded (FFPE) breast cancer samples of women HIV-negative and HIV-positive for transcriptome and retrotranscriptome analyses. We performed RNA extraction from FFPE samples, library preparation and total RNA sequencing (RNA-seq). The RNA-seq analysis shows 185 differentially expressed genes: 181 host genes (178 upregulated and three downregulated) and four upregulated HERV transcripts in HIV-positive samples. We also explored the impact of HERV expression in its neighboring breast cancer development genes (BRCA1, CCND1, NBS1/NBN, RAD50, KRAS, PI3K/PIK3CA) and in long non-coding RNA expression (AC060780.1, also known as RP11-242D8.1). We found a significant positive association of HERV expression with RAD50 and with AC060780.1, which suggest a possible role of HERV in regulating breast cancer genes from PLWH with breast cancer. In addition, we found immune system, extracellular matrix organization and metabolic signaling genes upregulated in HIV-positive breast cancer. In conclusion, our findings provide evidence of transcriptional and retrotranscriptional changes in breast cancer from PLWH compared to non-HIV breast cancer, including dysregulation of HERVs, suggesting an indirect effect of the virus on the breast cancer microenvironment.

11.
Viruses ; 12(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872377

RESUMO

Human endogenous retroviruses (HERVs) have been implicated in a variety of human diseases including cancers. However, technical challenges in analyzing HERV sequence data have limited locus-specific characterization of HERV expression. Here, we use the software Telescope (developed to identify expressed transposable elements from metatranscriptomic data) on 43 paired tumor and adjacent normal tissue samples from The Cancer Genome Atlas Program to produce the first locus-specific retrotranscriptome of head and neck cancer. Telescope identified over 3000 expressed HERVs in tumor and adjacent normal tissue, and 1078 HERVs were differentially expressed between the two tissue types. The majority of differentially expressed HERVs were expressed at a higher level in tumor tissue. Differentially expressed HERVs were enriched in members of the HERVH family. Hierarchical clustering based on HERV expression in tumor-adjacent normal tissue resulted in two distinct clusters with significantly different survival probability. Together, these results highlight the importance of future work on the role of HERVs across a range of cancers.


Assuntos
Retrovirus Endógenos/genética , Neoplasias de Cabeça e Pescoço/virologia , Retrovirus Endógenos/fisiologia , Feminino , Regulação Viral da Expressão Gênica , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Estadiamento de Neoplasias
12.
Viruses ; 12(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640516

RESUMO

In diseases where epigenetic mechanisms are changed, such as cancer, many genes show altered gene expression and inhibited genes become activated. Human endogenous retrovirus type K (HERV-K) expression is usually inhibited in normal cells from healthy adults. In tumor cells, however, HERV-K mRNA expression has been frequently documented to increase. Importantly, HERV-K-derived proteins can act as tumor-specific antigens, a class of neoantigens, and induce immune responses in different types of cancer. In this review, we describe the function of the HERV-K HML-2 subtype in carcinogenesis as biomarkers, and their potential as targets for cancer immunotherapy.


Assuntos
Retrovirus Endógenos , Imunoterapia/métodos , Neoplasias/virologia , Biomarcadores Tumorais/imunologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Genoma Viral/genética , Humanos , Neoplasias/imunologia , Neoplasias/terapia
13.
Sci Rep ; 10(1): 3304, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094379

RESUMO

Millions are exposed to the human immunodeficiency virus type 1 (HIV-1) every year, but not all acquire the virus, suggesting a potential role for host genetics in the moderation of HIV-1 acquisition. Here, we analyzed summary statistics from the largest genome-wide association study of HIV-1 acquisition to-date, consisting of 6,334 infected patients and 7,247 population controls, to advance our understanding of the genetic mechanisms implicated in this trait. We found that HIV-1 acquisition is polygenic and heritable, with SNP heritability estimates explaining 28-42% of the variance in this trait at a population level. Genetic correlations alongside UK Biobank data revealed associations with smoking, prospective memory and socioeconomic traits. Gene-level enrichment analysis identified EF-hand calcium binding domain 14 as a novel susceptibility gene for HIV-1 acquisition. We also observed that susceptibility variants for HIV-1 acquisition were significantly enriched for genes expressed in T-cells, but also in striatal and hippocampal neurons. Finally, we tested how polygenic risk scores for HIV-1 acquisition influence blood levels of 35 inflammatory markers in 406 HIV-1-negative individuals. We found that higher genetic risk for HIV-1 acquisition was associated with lower levels of C-C motif chemokine ligand 17. Our findings corroborate a complex model for HIV-1 acquisition, whereby susceptibility is partly heritable and moderated by specific behavioral, cellular and immunological parameters.


Assuntos
Comportamento , Genética Populacional , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Quimiocina CCL17/sangue , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Infecções por HIV/sangue , Humanos , Herança Multifatorial/genética , Neostriado/metabolismo , Neurônios/metabolismo , Fatores Socioeconômicos , Linfócitos T/metabolismo
14.
Mol Ther Methods Clin Dev ; 16: 11-20, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31720305

RESUMO

Although anti-retroviral therapy (ART) is successful in suppressing HIV-1 replication, HIV latently infected reservoirs are not eliminated, representing a major hurdle in efforts to eradicate the virus. Current strategies to eradicate HIV involve two steps: (1) the reactivation of latently infected cells with latency reversing agents (LRAs) to expose persisting HIV, and (2) the elimination of these cells with immune effectors while continuing ART to prevent reinfection. HIV-specific T cells (HSTs) can kill reactivated HIV-infected cells and are currently being evaluated in early-stage immunotherapy trials. HIV can mutate sequences in T cell epitopes and evade T cell-mediated killing of HIV-infected cells. However, by directing T cells to target multiple conserved, non-escaped HIV epitopes, the opportunity for viral escape can be reduced. Using a good manufacturing practice (GMP)-compliant platform, we manufactured HSTs against non-escape epitope targets (HST-NEETs) from HIV+ and HIV-seronegative donors. HST-NEETs expanded to clinically relevant numbers, lysed autologous antigen-pulsed targets, and showed a polyfunctional pro-inflammatory cytokine response. Notably, HST-NEETs recognized multiple conserved, non-escaped HIV epitopes and their common variants. We propose that HST-NEETs could be used to eliminate reactivated virus from latently infected cells in HIV+ individuals following LRA treatment. Additionally, HST-NEETs derived from HIV-negative individuals could be used post-transplant for HIV+ individuals with hematologic malignancies to augment anti-viral immunity and destroy residual infected cells.

16.
Biol Psychiatry ; 86(2): 120-130, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31097295

RESUMO

BACKGROUND: The 5'-nucleotidase, cytosolic II gene (NT5C2, cN-II) is associated with disorders characterized by psychiatric and psychomotor disturbances. Common psychiatric risk alleles at the NT5C2 locus reduce expression of this gene in the fetal and adult brain, but downstream biological risk mechanisms remain elusive. METHODS: Distribution of the NT5C2 protein in the human dorsolateral prefrontal cortex and cortical human neural progenitor cells (hNPCs) was determined using immunostaining, publicly available expression data, and reverse transcriptase quantitative polymerase chain reaction. Phosphorylation quantification of adenosine monophosphate-activated protein kinase (AMPK) alpha (Thr172) and ribosomal protein S6 (Ser235/Ser236) was performed using Western blotting to infer the degree of activation of AMPK signaling and the rate of protein translation. Knockdowns were induced in hNPCs and Drosophila melanogaster using RNA interference. Transcriptomic profiling of hNPCs was performed using microarrays, and motility behavior was assessed in flies using the climbing assay. RESULTS: Expression of NT5C2 was higher during neurodevelopment and was neuronally enriched in the adult human cortex. Knockdown in hNPCs affected AMPK signaling, a major nutrient-sensing mechanism involved in energy homeostasis, and protein translation. Transcriptional changes implicated in protein translation were observed in knockdown hNPCs, and expression changes to genes related to AMPK signaling and protein translation were confirmed using reverse transcriptase quantitative polymerase chain reaction. The knockdown in Drosophila was associated with drastic climbing impairment. CONCLUSIONS: We provide an extensive neurobiological characterization of the psychiatric risk gene NT5C2, describing its previously unknown role in the regulation of AMPK signaling and protein translation in neural stem cells and its association with Drosophila melanogaster motility behavior.


Assuntos
5'-Nucleotidase/genética , Proteínas Quinases Ativadas por AMP/genética , Transtornos Mentais/genética , Células-Tronco Neurais/metabolismo , Biossíntese de Proteínas/genética , Transdução de Sinais/genética , Adulto , Animais , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Humanos , Atividade Motora/genética , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/psicologia , Fosforilação , Interferência de RNA
19.
Cytokine ; 111: 272-277, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30241016

RESUMO

The establishment of latent HIV-1 reservoirs in terminally differentiated cells represents a major impediment to the success of antiretroviral therapies. Notably, macrophages (Mϕs) are susceptible to HIV-1 infection and recent evidence suggests that they may be involved in long-term HIV-1 persistence. While the extensive functional heterogeneity seen across the Mϕ cell lineage parallels the spectrum of HIV-1 susceptibility reported across these cell subsets, the facets of Mϕ HIV-1 resistance and susceptibility remain to be fully defined. Notably, the differentiation of most Mϕ subsets depends on signaling through the macrophage colony-stimulating factor receptor (M-CSFR), which in addition to M-CSF, is now known to bind the unrelated interleukin-34 (IL-34) cytokine. The biological need for two M-CSFR ligands awaits full elucidation. Here, we report that Mϕs differentiated from human peripheral blood monocytes with IL-34 are substantially more resistant to HIV-1 infection than M-CSF-derived Mϕs. Moreover, while both Mϕ subsets express comparable surface protein levels of the HIV-1 receptor and co-receptor, CD4 and CCR5 respectively, the IL-34-Mϕs express significantly greater levels of pertinent restriction factor genes, potentially accounting for their greater resistance to HIV-1 infection than that observed in M-CSF-Mϕs. Together, our findings underline previously unexplored differentiation pathways resulting in HIV-1-susceptible and resistant Mϕ subsets and pave the way for further research that may overcome one of the last major hurdles in developing more successful antiretroviral therapy.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , Interleucinas/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Diferenciação Celular/fisiologia , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , HIV-1/patogenicidade , Humanos , Monócitos/metabolismo , Monócitos/virologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
20.
Front Microbiol ; 9: 985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872426

RESUMO

HTLV-1-Associated Myelopathy (HAM/TSP) is a progressive neuroinflammatory disorder for which no disease-modifying treatment exists. Modest clinical benefit from type I interferons (IFN-α/ß) in HAM/TSP contrasts with its recently identified IFN-inducible gene signature. In addition, IFN-α treatment in vivo decreases proviral load and immune activation in HAM/TSP, whereas IFN-ß therapy decreases tax mRNA and lymphoproliferation. We hypothesize this "IFN paradox" in HAM/TSP might be explained by both cell type- and gene-specific effects of type I IFN in HTLV-1-associated pathogenesis. Therefore, we analyzed ex vivo transcriptomes of CD4+ T cells, PBMCs and whole blood in healthy controls, HTLV-1-infected individuals, and HAM/TSP patients. First, we used a targeted approach, simultaneously quantifying HTLV-1 mRNA (HBZ, Tax), proviral load and 42 host genes with known antiretroviral (anti-HIV) activity in purified CD4+ T cells. This revealed two major clusters ("antiviral/protective" vs. "proviral/deleterious"), as evidenced by significant negative (TRIM5/TRIM22/BST2) vs. positive correlation (ISG15/PAF1/CDKN1A) with HTLV-1 viral markers and clinical status. Surprisingly, we found a significant inversion of antiretroviral activity of host restriction factors, as evidenced by opposite correlation to in vivo HIV-1 vs. HTLV-1 RNA levels. The anti-HTLV-1 effect of antiviral cluster genes was significantly correlated to their adaptive chimp/human evolution score, for both Tax mRNA and PVL. Six genes of the proposed antiviral cluster underwent lentivirus-driven purifying selection during primate evolution (TRIM5/TRIM22/BST2/APOBEC3F-G-H), underscoring the cross-retroviral evolutionary imprint. Secondly, we examined the genome-wide type I IFN response in HAM/TSP patients, following short-term ex vivo culture of PBMCs with either IFN-α or IFN-ß. Microarray analysis evidenced 12 antiretroviral genes (including TRIM5α/TRIM22/BST2) were significantly up-regulated by IFN-ß, but not IFN-α, in HAM/TSP. This was paralleled by a significant decrease in lymphoproliferation by IFN-ß, but not IFN-α treatment. Finally, using published ex vivo whole blood transcriptomic data of independent cohorts, we validated the significant positive correlation between TRIM5, TRIM22, and BST2 in HTLV-1-infected individuals and HAM/TSP patients, which was independent of the HAM/TSP disease signature. In conclusion, our results provide ex vivo mechanistic evidence for the observed immunovirological effect of in vivo IFN-ß treatment in HAM/TSP, reconcile an apparent IFN paradox in HTLV-1 research and identify biomarkers/targets for a precision medicine approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA