Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 267: 106800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183773

RESUMO

Bisphenol S (BPS) is a common endocrine-disrupting chemical globally used in several consumer and industrial products. Although previous studies suggested that BPS induces multiple effects in exposed organisms, very little is known about its intergenerational effect on offspring behavior and/or the potential underlying mechanisms. To this end, adult female zebrafish Danio rerio were exposed to BPS (0, 10, 30 µg/L) and 1 µg/L of 17-ß-estradiol (E2) as a positive control for 60 days. Afterwards, female fish were bred with untreated males, and their offspring were raised to 6 months old in control water. Maternal exposure to BPS decreased male offspring anxiety and antipredator behaviors while boldness remained unaffected. Specifically, maternal exposure to 10 and 30 µg/L BPS and 1 µg/L E2 were found to impact male offspring anxiety levels as they decreased the total time that individuals spent in the dark zone in the light/dark box test and increased the total track length in the center of the open field test. In addition, maternal exposure to all concentrations of BPS and E2 disrupted antipredator responses of male offspring by decreasing shoal cohesion in the presence of chemical alarm cues derived from conspecifics, which communicated high risk. To elucidate the possible molecular mechanism underlying these neuro-behavioral effects of BPS, we assessed the serotonergic system via changes in mRNA expression of serotonin receptors, including the 5-HT1A, 5-HT1B, and 5-HT1D subtypes, the serotonin transporter and monoamine oxidase (MAO). The impaired anxiety and antipredator responses were associated with reduced levels of 5-HT1A subtype and MAO mRNA expression within the brain of adult male offspring. Collectively, the results of this study demonstrate that maternal exposure to environmental concentrations of BPS can interfere with the serotonergic signaling pathway in the developing brain, subsequently leading to the onset of a suite of behavioral deficits in adult offspring.


Assuntos
Fenóis , Sulfonas , Poluentes Químicos da Água , Peixe-Zebra , Humanos , Animais , Masculino , Feminino , Peixe-Zebra/metabolismo , Exposição Materna , Serotonina/metabolismo , Poluentes Químicos da Água/toxicidade , Ansiedade/induzido quimicamente , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , RNA Mensageiro/metabolismo
2.
Environ Sci Pollut Res Int ; 30(20): 58189-58199, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36976468

RESUMO

An in vitro study was carried out to examine the impact of UV exposure on metal-dissolved humic material (M-DHM) complexes in aqueous systems at different pH. Complexation reactions of dissolved M (Cu, Ni, and Cd) with DHM increased with the increasing pH of the solution. Kinetically inert M-DHM complexes dominated at higher pH in the test solutions. Exposure to UV radiation did affect the chemical speciation of M-DHM complexes at different pH of the systems. The overall observation suggests that exposure to increasing UV radiation increased the lability, mobility, and bioavailability of M-DHM complexes in aquatic environments. The dissociation rate constant of Cu-DHM was found to be slower than Ni-DHM and Cd-DHM complexes (both before and after UV exposure). At a higher pH range, Cd-DHM complexes dissociated after exposure to UV radiation and a part of this dissociated Cd precipitated out from the system. No change in the lability of the produced Cu-DHM and Ni-DHM complexes after UV radiation exposure was observed. They did not appear to form new kinetically inert complexes even after 12 h of exposure. The outcome of this research has important global implications. The results of this study helped to understand DHM leachability from soil and its effect on dissolved metal concentrations in the Northern Hemisphere water bodies. The results of this study also facilitated to comprehend the fate of M-DHM complexes at photic depths (where pH changes are accompanied by high UV radiation exposure) in tropical marine/freshwater systems during summer.


Assuntos
Complexos de Coordenação , Exposição à Radiação , Cádmio , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio
3.
Sci Rep ; 13(1): 4259, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918592

RESUMO

In recent times Gallbladder cancer (GBC) incidences increased many folds in India and are being reported from arsenic hotspots identified in Bihar. The study aims to establish association between arsenic exposure and gallbladder carcinogenesis. In the present study, n = 200 were control volunteers and n = 152 confirmed gallbladder cancer cases. The studied GBC patient's biological samples-gallbladder tissue, gallbladder stone, bile, blood and hair samples were collected for arsenic estimation. Moreover, n = 512 gallbladder cancer patients blood samples were also evaluated for the presence of arsenic to understand exposure level in the population. A significantly high arsenic concentration (p < 0.05) was detected in the blood samples with maximum concentration 389 µg/L in GBC cases in comparison to control. Similarly, in the gallbladder cancer patients, there was significantly high arsenic concentration observed in gallbladder tissue with highest concentration of 2166 µg/kg, in gallbladder stones 635 µg/kg, in bile samples 483 µg/L and in hair samples 6980 µg/kg respectively. Moreover, the n = 512 gallbladder cancer patient's blood samples study revealed very significant arsenic concentration in the population of Bihar with maximum arsenic concentration as 746 µg/L. The raised arsenic concentration in the gallbladder cancer patients' biological samples-gallbladder tissue, gallbladder stone, bile, blood, and hair samples was significantly very high in the arsenic exposed area. The study denotes that the gallbladder disease burden is very high in the arsenic exposed area of Bihar. The findings do provide a strong link between arsenic contamination and increased gallbladder carcinogenesis.


Assuntos
Intoxicação por Arsênico , Arsênio , Neoplasias da Vesícula Biliar , Cálculos Biliares , Humanos , Arsênio/análise , Neoplasias da Vesícula Biliar/epidemiologia , Neoplasias da Vesícula Biliar/etiologia , Intoxicação por Arsênico/complicações , Intoxicação por Arsênico/epidemiologia , Cálculos Biliares/epidemiologia , Carcinogênese , Índia/epidemiologia
4.
Toxics ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36548577

RESUMO

Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.

5.
Sci Total Environ ; 830: 154794, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341835

RESUMO

Recent studies show that bisphenol S (BPS) induces multiple adverse effects in exposed organisms; however, the maternal effects of BPS exposure remain poorly understood. Here, we expose adult female zebrafish to environmentally relevant concentrations of BPS (0, 1, 10, 30 µg/L) and 1 µg/L of 17-ß-estradiol (E2) as a positive control for 60 days. Females were then paired with BPS-unexposed males and their offspring were raised in control water for 6 months. Maternal exposure to BPS was found to alter social behavior and anxiety response in a dose-specific manner in male offspring. Group preferences and social cohesion were significantly reduced by maternal exposure to 1 and 10 µg/L BPS, respectively. Additionally, maternal exposure to 1 and 30 µg/L BPS and E2 decreased offspring stress responses during the novel tank test. The impaired social behavior was associated with elevated arginine-vasotocin (AVT) level as well as with the altered expression of genes involved in AVT signaling pathway (AVT, avpr1aa) and enzymatic antioxidant genes (cat and Mn-sod) in the brain. Collectively, these results suggest that maternal exposure to environmentally relevant concentrations of BPS alters social behavior in zebrafish offspring, which is likely mediated by oxidative stress and disruption of neuropeptide signaling pathways in the brain.


Assuntos
Neuropeptídeos , Peixe-Zebra , Animais , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Exposição Materna/efeitos adversos , Neuropeptídeos/metabolismo , Estresse Oxidativo , Fenóis , Transdução de Sinais , Comportamento Social , Sulfonas , Peixe-Zebra/fisiologia
6.
J Diabetes Metab Disord ; 20(2): 1199-1209, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900772

RESUMO

BACKGROUND: Elevated levels of the enzymes gamma-glutamyltransferase (GGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and C-reactive protein (CRP) have been shown to be associated with increased risk of cardiovascular disease (CVD). Objective: To assess cross-sectional relationships between biomarkers GGT, ALT, AST, ALP and CVD in adult Canadian population. METHODS: The Canadian Health Measures Surveys (CHMSs) are a series of cross-sectional national surveys and collect information on indicators of general health and wellness of Canadians. The CHMS has four components. We used data from the first three components (for Study participants ≥ 20 years) from CHMS cycles 1 through 5. RESULTS: Multivariable logistic regression revealed: immigration status [Odds ratio (OR)(95% Confidence Interval (95% CI)) = 0.67 (0.53-0.85), reference category (RC)-no-immigrant] education [1.38(1.10-1.75), RC- > secondary education]; smoking status [ex-smokers: 1.16(0.89-1.51); current smokers: 1.41(0.98-2.05), RC-non-smoker]; and income [middle income: 0.69(0.43-1.10); high income: 0.49(0.29-0.83); RC-lower income] were significantly associated with CVD prevalence. CONCLUSION: The relationship of GGT with CVD prevalence changed among age groups and body mass index categories; was different for males and females; and diabetes was an effect modifier in the relationship between AST and CVD prevalence. Socio-economic factors were significantly associated with CVD prevalence.

7.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576240

RESUMO

Arsenic is a key environmental toxicant having significant impacts on human health. Millions of people in developing countries such as Bangladesh, Mexico, Taiwan, and India are affected by arsenic contamination through groundwater. Environmental contamination of arsenic leads to leads to various types of cancers, coronary and neurological ailments in human. There are several sources of arsenic exposure such as drinking water, diet, wood preservatives, smoking, air and cosmetics, while, drinking water is the most explored route. Inorganic arsenic exhibits higher levels of toxicity compared its organic forms. Exposure to inorganic arsenic is known to cause major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it is important to understand the toxicology and underlying molecular mechanism of arsenic which will help to mitigate its detrimental effects. The present review focuses on the epidemiology, and the toxic mechanisms responsible for arsenic induced neurobehavioral diseases, including strategies for its management from water, community and household premises. The review also provides a critical analysis of epigenetic and transgenerational modifications, mitochondrial oxidative stress, molecular mechanisms of arsenic-induced oxidative stress, and neuronal dysfunction.


Assuntos
Arsênio/toxicidade , Neurônios/patologia , Envelhecimento , Ar , Animais , Intoxicação por Arsênico , Bangladesh/epidemiologia , Cosméticos , Exposição Ambiental/análise , Monitoramento Ambiental , Água Subterrânea , Humanos , Bainha de Mielina/química , Condução Nervosa , Síndromes Neurotóxicas , Neurotransmissores/metabolismo , Estresse Oxidativo , Saúde Pública , Fumar , Água/análise , Poluentes Químicos da Água/toxicidade
8.
Environ Pollut ; 272: 116027, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248835

RESUMO

Environmental water quality guidelines often work under the assumption that the toxicity of environmental pollutants is identical when present in isolation or in a complex chemical mixture. Thus, there is a crucial gap in our knowledge regarding how these toxicants interact and alter the toxicological effects in aquatic organisms. The present study examined the effects of acute (72-hr) aqueous exposures of Cadmium (Cd), a highly toxic non-essential trace metal, and Benzo[a]Pyrene (B[a]P), a prototypical polycyclic aromatic hydrocarbon (PAH) in adult zebrafish. Following a range-finding series of individual single-toxicant exposures, a second series was carried out using select concentrations in binary mixture exposures (using 5.8 or 22 µg/L for Cd; 0.44 or 1.07 µg/L for B[a]P). Our results demonstrated that tissue accumulation of both toxicants increased significantly in the presence of the second toxicant relative to single-toxicant exposures. Cd-only and B[a]P-only single toxicant exposures caused a significant downregulation of cytochrome p4501a (CYP1A1) and metallothionein-2 (MT2) mRNA in the gills, respectively, however binary co-exposures using both toxicants resulted in strong up-regulation of CYP1A1 and MT2. Additionally, co-exposures caused a strong induction of SOD1 and CAT mRNA transcript levels in the gill. The observed increase in body burden and transcript modulation did not translate into additive or more-than-additive toxic effects (oxidative stress) in zebrafish.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/toxicidade , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
9.
Chemosphere ; 265: 129142, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33291014

RESUMO

Recent studies have shown that white sturgeon (Acipenser transmontanus) are more resistant to cadmium (Cd) compared to rainbow trout (Oncorhynchus mykiss), whereas they are more sensitive than rainbow trout when exposed to copper (Cu). Differences in the subcellular distribution of metals among species could be one of the factors responsible for the differences in the sensitivity to metals. Although, subcellular distribution has been studied extensively in many species with many metals, its direct role in species-specific differences in the sensitivity has not been well studied. The objective of this study was to evaluate the role of subcellular distribution of metals in species-specific differences in the sensitivity to metals between sturgeon and trout. We compared the subcellular distribution of metals Cd and Cu in the cellular debris, heat-stable proteins, heat-denatured fraction, metal-rich granules, and organelles fractions from the gills and liver after exposure of juveniles of both species to 1.25 and 20 µg/L Cd and Cu for 8 days, respectively. Sturgeon diverted a higher amount of Cd towards biologically inactive metal pool (BIM) and a lower amount towards the biologically active metal pool (BAM) compared to trout in both tissues. This explained why sturgeon are able to tolerate a relatively higher exposure level to Cd compared to trout. For Cu, there was no statistically significant species-specific differences in the amounts diverted towards either BAM or BIM; hence, white sturgeon's greater sensitivity to Cu was not explained by its subcellular distribution strategies.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Cádmio/análise , Cádmio/toxicidade , Cobre/análise , Cobre/toxicidade , Brânquias/química , Fígado/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Environ Pollut ; 262: 113992, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32126434

RESUMO

Bisphenol S (BPS), considered to be a safe alternative to Bisphenol A, is increasingly used in a wide variety of consumer and industrial products. However, mounting evidence suggests that BPS can act as a xenoestrogen targeting a wide range of neuro-endocrine functions in animals. At present, very little is known about the impacts of BPS on social behaviors and/or the potential underlying mechanisms. To this end, we exposed adult male and female zebrafish to environmentally relevant concentrations of BPS (0 (control), 1, 10, and 30 µg/L), as well as to 17ß-estradiol (E2; 1 µg/L; as positive control) for 75 days. Subsequently, alterations in social behaviors were evaluated by measuring shoal cohesion, group preferences, and locomotor activity. Furthermore, to elucidate the possible molecular mechanism underlying the neuro-behavioral effects of BPS, we also quantified the changes in the mRNA abundance of arginine vasotocin (AVT), isotocin (IT), and their corresponding receptors in the zebrafish brain. The results showed that E2 and BPS (30 µg/L) decreased shoal cohesion in both males and females. Moreover, a marked decline in group preferences was observed in all treatment groups, while locomotor activity remained unaffected. Alterations in the social behaviors were associated with sex-specific changes in the mRNA expression of genes involved in IT and AVT signaling. Taken together, the results of this study suggest that chronic exposure to BPS can impair zebrafish social behaviors via disruption of isotocinergic and vasotocinergic neuro-endocrine systems.


Assuntos
Neuropeptídeos , Peixe-Zebra , Animais , Encéfalo , Feminino , Masculino , Fenóis , Comportamento Social , Sulfonas
11.
Artigo em Inglês | MEDLINE | ID: mdl-32044455

RESUMO

Early life-stages of the endangered white sturgeon (Acipenser transmontanus) have been shown to be among the most sensitive fishes to aqueous copper (Cu) exposure. In a recent analogous study, we examined the role of whole-body Cu accumulation and Na homeostasis in species-specific differences between the sensitivity of white sturgeon and a common laboratory fish model, rainbow trout, to Cu. However, the potential roles of important mechanisms such as Cu-induced oxidative stress and/or metallothionein (MT) induction as potential drivers of sensitivity of white sturgeon to Cu have not been investigated to date. Here, rainbow trout and white sturgeon from three different early life-stages were exposed to waterborne Cu for 96 h, following which major antioxidant parameters, lipid peroxidation and MT gene expression were evaluated. Results indicated that during larval and swim-up life-stages, Cu induced oxidative damage in white sturgeon was greater than in rainbow trout. Moreover, baseline glutathione (GSH) was significantly greater in rainbow trout than white sturgeon. Observations also suggested that trout exceedingly relied on GSH to combat Cu-induced oxidative stress as they grew older. In contrast, sturgeon recruited an increasing level of MT to neutralize Cu-induced oxidative stress and/or Cu loading. In our recent study, we demonstrated that Na homeostasis is more susceptible to Cu in white sturgeon than in rainbow trout. Collectively, these findings indicate that the greater degree of oxidative damage in early life-stages, in addition to the higher magnitude of the disruption of Na homeostasis, contributes to the higher sensitivity of white sturgeon to Cu exposure.


Assuntos
Cobre/toxicidade , Peixes/metabolismo , Metalotioneína/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Animais , Glutationa/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Peroxidação de Lipídeos , Sódio/metabolismo
12.
Environ Pollut ; 261: 114060, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32045791

RESUMO

Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17ß-estradiol (E2, 1 µg/L), or BPS (1, 10 and 30 µg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 µg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 µg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.


Assuntos
Compostos Benzidrílicos , Peixe-Zebra , Animais , Cognição , Sistema Endócrino , Feminino , Humanos , Fenóis , Sulfonas
13.
Behav Brain Res ; 384: 112514, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004591

RESUMO

In recent years, there has been a growing appreciation that 17ß-estradiol (E2) can rapidly modulate learning and memory processes by binding to membrane estrogen receptors and cause the activation of a number of signaling cascades within the central nervous system. In this study, we sought to investigate the effects of post-training administration of E2 (100 ng/g, 1 µg/g, 10 µg/g) and involvement of the estrogen receptors (ERs) using selective ER agonists on the consolidation of object recognition (OR) and object placement memory (OP) in adult male zebrafish. The general activation of ERs with the highest E2 dose improved consolidation of memory in both learning tasks within 1.45 h of administration. Activation of classical ERs (ERα and ERß) improved consolidation of OR memory, but had no effect on fish performance in OP task. On the other hand, activation of G protein-coupled ER1 impaired and enhanced consolidation of OR and OP memories, respectively. Memory improvement in both tasks was accompanied by a marked up-regulation in the expression of genes encoding ionotropic and metabotropic glutamate receptors in a task-dependent manner. In contrast, the down-regulation in the expression of certain ionotropic glutamate receptors was observed in fish with impaired OR memory. Moreover, our study also revealed an increase in the transcript abundance of genes associated with synaptic protein synthesis (brain-derived neurotrophic factor, synaptophysin, and the mechanistic target of rapamycin). These results suggest that E2 may affect consolidation of memory in zebrafish likely through rapid changes in synaptic morphology and function.


Assuntos
Encéfalo/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Consolidação da Memória/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Ciclopentanos/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Consolidação da Memória/fisiologia , Nitrilas/farmacologia , Fenóis/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , RNA Mensageiro/metabolismo , Receptores de AMPA/genética , Receptores de Glutamato Metabotrópico/genética , Receptores de N-Metil-D-Aspartato/genética , Reconhecimento Psicológico/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Memória Espacial/fisiologia , Sinaptofisina/genética , Serina-Treonina Quinases TOR/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/agonistas
14.
Aquat Toxicol ; 215: 105283, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31470336

RESUMO

Recent studies have demonstrated that white sturgeon are more sensitive to acute exposure to Cu than rainbow trout (Oncorhynchus mykiss), especially during early life-stages. However, the physiological mechanisms underlying this difference in sensitivity to Cu is not known. In the present study, we first confirmed the higher sensitivity (lower 96 h LC50 values) of white sturgeon to Cu at three different life stages (larva, swim-up, and juvenile) relative to their counterparts in rainbow trout. We also demonstrated that acute exposure to Cu (50 µg/L for 4.5 h) caused a significantly greater reduction in the rate of waterborne Na uptake in white sturgeon relative to that in rainbow trout across all three life-stages. In agreement with this observation, we also found that acute exposure to Cu (20 µg/L for 48 h) elicits a significantly greater decrease in whole body Na level in all life stages of white sturgeon compared to rainbow trout. In contrast, white sturgeon demonstrated a higher or similar level of Cu body burden relative to rainbow trout during acute Cu exposure (20 µg/L for 24 h), thereby indicating that Cu bioaccumulation is not a good indicator of its toxicity in these species. Overall, our study demonstrated that the differences in sensitivity to acute Cu exposure between white sturgeon and rainbow trout can be explained on the basis of differential effects of Cu on Na homeostasis.


Assuntos
Cobre/toxicidade , Peixes/fisiologia , Homeostase/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Sódio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental , Dose Letal Mediana , Oncorhynchus mykiss/sangue , ATPases Translocadoras de Prótons/metabolismo , Sódio/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Testes de Toxicidade Aguda , Qualidade da Água
15.
Sci Total Environ ; 673: 318-326, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30991321

RESUMO

Understanding the mechanistic basis of differences in the sensitivity of fishes to metals is important for developing informed ecological risk assessment approaches for metals. Whole body metal accumulation, metallothionein induction, oxidative stress and associated antioxidant response, as well as heat shock proteins (mainly HSP70) are known to play important roles in determining the toxicity of metals in fish. Hence, in this study we have cross-evaluated these parameters as a function of Cd exposure across different life-stages of two evolutionarily distinct fish species, namely rainbow (Oncorhynchus mykiss) trout and white sturgeon (Acipenser transmontanus). These two species have been shown to differ significantly in their physiological and apical responses to Cd exposure. The findings of the present study suggest that species-specific differences in the sensitivity to Cd could partially be explained by HSP70 gene response and oxidative damage biomarkers. However, not all the parameters studied in this study could explain the life-stage specific differences universally and were limited to only some life-stages. Based on the observations in the present study and other recent studies, it is apparent that species- and life-stage specific differences in the sensitivity to Cd and possibly other metals is a complex phenomenon and could be driven by multiple toxicokinetic and toxicodynamic factors.


Assuntos
Cádmio/metabolismo , Proteínas de Choque Térmico/metabolismo , Metalotioneína/metabolismo , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/metabolismo , Animais , Cádmio/toxicidade , Estresse Oxidativo/fisiologia , Poluentes Químicos da Água/toxicidade
16.
Environ Sci Technol ; 52(21): 12868-12876, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351036

RESUMO

There are huge variations in life-stage- and species-specific sensitivities among the fishes to the exposure with metals; however, the physiological mechanisms underlying these differences are not well understood to date. This study revealed significant life-stage-specific (larval, swim-up, and juvenile) and species-specific differences between two evolutionary distant species of fishes, rainbow trout ( Oncorhynchus mykiss) and white sturgeon ( Acipenser transmontanus), following acute exposures to Cd. Although the 96 h LC50 of Cd was similar in both species at the larval stage, trout demonstrated an increased sensitivity to Cd at later life stages as compared to sturgeon. Moreover, exposure to Cd disrupted calcium (Ca) uptake and whole body Ca levels in trout by a greater degree relative to that in sturgeon regardless of life stage. Finally, white sturgeon demonstrated a lower affinity for Cd uptake relative to the more sensitive rainbow trout. This infers a differential nature of the interaction between Cd and Ca transport pathways in the two species and partially explains the differences in Cd sensitivity between rainbow trout and white sturgeon described previously. Overall, our results suggest that species- and life-stage-specific differences in sensitivity to waterborne Cd in fish are likely a function of the interplay between Cd uptake and Cd-induced disruption of Ca homeostasis.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Cádmio , Cobre , Larva
17.
Artigo em Inglês | MEDLINE | ID: mdl-29803893

RESUMO

We employed Fourier Transform Infrared Microspectroscopy to examine, in situ, the effects of waterborne Cu, Cd and Zn, alone and in binary mixtures, during acute exposure on the integrity of major lipid and protein constituents of the gill of a model teleost species, rainbow trout (Oncorhynchus mykiss). Our findings demonstrated that acute exposure to metals, both individually and in binary mixture, resulted in the degradations of various components of proteins and lipids in the gill tissue. Generally, when comparing the effects of individual metals, Cu was found to induce the maximum adverse effects followed by Cd and Zn, respectively. Among the binary metal-mixture combinations, Cu and Cd produced additive effects on the degradation of major proteins and lipid moieties, whereas the co-exposure of Zn with Cd or Cu elicited ameliorative effects, indicating antagonistic (less than additive) interactions between Zn and Cd or Cu in the rainbow trout gill. Overall, the present study demonstrates that FTIRM can be a useful tool to gain novel mechanistic insights into the biochemical changes induced by metals in the fish gill, which could influence the overall toxicity of metals to fish.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Brânquias/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Aquicultura , Cádmio/metabolismo , Cobre/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/citologia , Brânquias/metabolismo , Processamento de Imagem Assistida por Computador , Metabolismo dos Lipídeos/efeitos dos fármacos , Microscopia , Imagem Multimodal , Oncorhynchus mykiss/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual , Testes de Toxicidade Aguda , Toxicocinética , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo
18.
Comp Biochem Physiol C Toxicol Pharmacol ; 206-207: 23-31, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29501824

RESUMO

We utilized micro X-ray fluorescence imaging (µ-XFI) and micro X-ray absorption near-edge spectroscopy (µ-XANES), which are both synchrotron-based techniques to investigate Zn distribution profile, its co-localization patterns with Ca, S, and Fe and speciation in the gills of rainbow trout (RBT). Fish (~100 g) were exposed to acutely toxic levels of waterborne Zn alone and in combination with waterborne Cd or Cu for 24 h (each at 1 × 96 h LC50). Gill sections were prepared and analyzed at the VESPERS beamline of the Canadian Light Source. The primary lamellae of the fish gill were found to be the primary area of Zn accumulation. These regions also correspond to the zones of mitochondria rich cells localization in fish gills, supporting the putative roles of these cells in metal uptake. Zn was also found to predominantly co-localize with Ca and S, but not with Fe, indicating the roles of Ca and S in intracellular Zn handling. Zn distribution in the gill was markedly reduced during co-exposure to Cd, but not to Cu, suggesting a competitive interaction between Zn and Cd for uptake. The speciation of Zn in the gill was dominated by Zn-phosphate, Zn-histidine and Zn-cysteine species; however, the interactions of Zn with Cd or Cu resulted in the loss of Zn-cysteine. Overall, our findings provide important novel insights into the interactions of Zn, Cd and Cu in the fish gill, which may ultimately help to explain the mechanisms underlying the acute toxicity of these metals in binary mixture to fish.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Brânquias/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Cálcio/metabolismo , Cisteína/metabolismo , Interações Medicamentosas , Brânquias/citologia , Brânquias/metabolismo , Histidina/metabolismo , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , Compostos Organometálicos/metabolismo , Fosfatos/metabolismo , Espectrometria por Raios X , Enxofre/metabolismo , Distribuição Tecidual , Testes de Toxicidade Aguda , Toxicocinética , Poluentes Químicos da Água/metabolismo , Espectroscopia por Absorção de Raios X , Zinco/metabolismo , Compostos de Zinco/metabolismo
19.
Chemosphere ; 197: 550-559, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29407817

RESUMO

The present study investigated the interactive effects of dietary cadmium (Cd) and selenium (Se) on the tissue-specific (liver, kidney, and muscle) accumulation of these two elements, hepatic oxidative stress response, and morphometrics in rainbow trout (Oncorhynchus mykiss) during chronic exposure. Fish were exposed to elevated dietary Cd (45 µg g-1 dry wt.), and medium (10 µg g-1 dry wt.) or high (45 µg g-1 dry wt.) dietary selenium (added as selenomethionine), both alone and in combination, for 30 days. Exposure to dietary Cd alone caused oxidative stress in fish as reflected by reduced thiol redox (GSH:GSSG), increased lipid peroxidation, and induction of anti-oxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in the liver. Also, an increase in tissue-specific Cd burden and impaired morphometrics (hepato-somatic index and condition factor) were also recorded in fish following exposure to dietary Cd. In contrast, the dietary co-exposure to Cd and Se (at both medium and high doses) resulted in a decrease in Cd burden in the liver and kidney of fish. However, co-exposure to medium, but not high, dose of dietary Se completely alleviated Cd-induced oxidative stress and impaired morphometrics in fish, indicating that the reduced Cd tissue burden might not have been the primary factor behind the amelioration of Cd toxicity by Se. Overall, our study demonstrated that the protective effect of Se against the chronic Cd toxicity in fish is mainly mediated by the anti-oxidative properties of Se, but this protective effect is dose-specific and occurs only at a moderate exposure dose.


Assuntos
Cádmio/toxicidade , Exposição Dietética/análise , Oncorhynchus mykiss/fisiologia , Selenometionina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Dieta , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Superóxido Dismutase/metabolismo , Testes de Toxicidade Crônica
20.
Aquat Toxicol ; 190: 217-227, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28763741

RESUMO

Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRT

Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Oncorhynchus mykiss/genética , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Perfilação da Expressão Gênica/métodos , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Estágios do Ciclo de Vida/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real/métodos , Pele/efeitos dos fármacos , Pele/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA