Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 196: 105591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945242

RESUMO

The two-spotted spider mite Tetranychus urticae is a polyphagous pest with an extraordinary ability to develop acaricide resistance. Here, we characterize the resistance mechanisms in a T. urticae population (VR-BE) collected from a Belgian tomato greenhouse, where the grower was unsuccessful in chemically controlling the mite population resulting in crop loss. Upon arrival in the laboratory, the VR-BE population was established both on bean and tomato plants as hosts. Toxicity bioassays on both populations confirmed that the population was highly multi-resistant, recording resistance to 12 out of 13 compounds tested from various mode of action groups. DNA sequencing revealed the presence of multiple target-site resistance mutations, but these could not explain resistance to all compounds. In addition, striking differences in toxicity for six acaricides were observed between the populations on bean and tomato. The highest difference was recorded for the complex II inhibitors cyenopyrafen and cyflumetofen, which were 4.4 and 3.3-fold less toxic for VR-BE mites on tomato versus bean. PBO synergism bioassays suggested increased P450 based detoxification contribute to the host-dependent toxicity. Given the involvement of increased detoxification, we subsequently determined genome-wide gene expression levels of VR-BE on both hosts, in comparison to a reference susceptible population, revealing overexpression of a large set of detoxification genes in VR-BE on both hosts compared to the reference. In addition, a number of mainly detoxification genes with higher expression in VR-BE on tomato compared to bean was identified, including several cytochrome P450s. Together, our work suggests that multi-resistant field populations can accumulate a striking number of target-site resistance mutations. We also show that the host plant can have a profound effect on the P450-associated resistance levels to cyenopyrafen and cyflumetofen.


Assuntos
Acaricidas , Tetranychidae , Animais , Acaricidas/farmacologia , Tetranychidae/genética , Pirazóis/farmacologia
2.
BMC Biol ; 20(1): 131, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35658860

RESUMO

BACKGROUND: Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homology to "intradiol ring cleavage dioxygenases (DOGs)" from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. RESULTS: We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mite's gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites' survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. CONCLUSION: Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide experimental evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants.


Assuntos
Dioxigenases , Solanum lycopersicum , Tetranychidae , Animais , Dioxigenases/genética , Herbivoria , Solanum lycopersicum/genética , Filogenia , Plantas , Tetranychidae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA