Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 14(6): 2835-2850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879629

RESUMO

BACKGROUND: This study was designed to develop an understanding of the pathophysiology of traumatic muscle injury in the context of Western diet (WD; high fat and high sugar) and obesity. The objective was to interrogate the combination of WD and injury on skeletal muscle mass and contractile and metabolic function. METHODS: Male and female C57BL/6J mice were randomized into four groups based on a two-factor study design: (1) injury (uninjured vs. volumetric muscle loss [VML]) and (2) diet (WD vs. normal chow [NC]). Electrophysiology was used to test muscle strength and metabolic function in cohorts of uninjured + NC, uninjured + WD, VML + NC and VML + WD at 8 weeks of intervention. RESULTS: VML-injured male and female mice both exhibited decrements in muscle mass (-17%, P < 0.001) and muscle strength (-28%, P < 0.001); however, VML + WD females had a 28% greater muscle mass compared to VML + NC females (P = 0.034), a compensatory response not detected in males. VML-injured male and female mice both had lower carbohydrate- and fat-supported muscle mitochondrial respiration (JO2 ) and less electron conductance through the electron transport system (ETS); however, male VML-WD had 48% lower carbohydrate-supported JO2 (P = 0.014) and 47% less carbohydrate-supported electron conductance (P = 0.026) compared to male VML + NC, and this diet-injury phenotype was not present in females. ETS electron conductance starts with complex I and complex II dehydrogenase enzymes at the inner mitochondrial membrane, and male VML + WD had 31% less complex I activity (P = 0.004) and 43% less complex II activity (P = 0.005) compared to male VML + NC. This was a diet-injury phenotype not present in females. Pyruvate dehydrogenase (PDH), ß-hydroxyacyl-CoA dehydrogenase, citrate synthase, α-ketoglutarate dehydrogenase and malate dehydrogenase metabolic enzyme activities were evaluated as potential drivers of impaired JO2 in the context of diet and injury. There were notable male and female differential effects in the enzyme activity and post-translational regulation of PDH. PDH enzyme activity was 24% less in VML-injured males, independent of diet (P < 0.001), but PDH enzyme activity was not influenced by injury in females. PDH enzyme activity is inhibited by phosphorylation at serine-293 by PDH kinase 4 (PDK4). In males, there was greater total PDH, phospho-PDHser293 and phospho-PDH-to-total PDH ratio in WD mice compared to NC, independent of injury (P ≤ 0.041). In females, PDK4 was 51% greater in WD compared to NC, independent of injury (P = 0.025), and was complemented by greater phospho-PDHser293 (P = 0.001). CONCLUSIONS: Males are more susceptible to muscle metabolic dysfunction in the context of combined WD and traumatic injury compared to females, and this may be due to impaired metabolic enzyme functions.


Assuntos
Dieta Ocidental , Doenças Musculares , Camundongos , Masculino , Feminino , Animais , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Oxirredutases/metabolismo , Carboidratos
2.
Neuropharmacology ; 178: 108270, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795460

RESUMO

Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced in the lateral hypothalamus and zona incerta that increases food intake. The neuronal pathways and behavioral mechanisms mediating the orexigenic effects of MCH are poorly understood, as is the extent to which MCH-mediated feeding outcomes are sex-dependent. Here we investigate the hypothesis that MCH-producing neurons act in the nucleus accumbens shell (ACBsh) to promote feeding behavior and motivation for palatable food in a sex-dependent manner. We utilized ACBsh MCH receptor (MCH1R)-directed pharmacology as well as a dual virus chemogenetic approach to selectively activate MCH neurons that project to the ACBsh. Results reveal that both ACBsh MCH1R activation and activating ACBsh-projecting MCH neurons increase consumption of standard chow and palatable sucrose in male rats without affecting motivated operant responding for sucrose, general activity levels, or anxiety-like behavior. In contrast, food intake was not affected in female rats by either ACBsh MCH1R activation or ACBsh-projecting MCH neuron activation. To determine a mechanism for this sexual dimorphism, we investigated whether the orexigenic effect of ACBsh MCH1R activation is reduced by endogenous estradiol signaling. In ovariectomized female rats on a cyclic regimen of either estradiol (EB) or oil vehicle, ACBsh MCH1R activation increased feeding only in oil-treated rats, suggesting that EB attenuates the ability of ACBsh MCH signaling to promote food intake. Collective results show that MCH ACBsh signaling promotes feeding in an estrogen- and sex-dependent manner, thus identifying novel neurobiological mechanisms through which MCH and female sex hormones interact to influence food intake.


Assuntos
Comportamento Alimentar/fisiologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Núcleo Accumbens/metabolismo , Hormônios Hipofisários/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologia , Animais , Comportamento Alimentar/psicologia , Feminino , Hormônios Hipotalâmicos/análise , Masculino , Melaninas/análise , Vias Neurais/química , Vias Neurais/metabolismo , Núcleo Accumbens/química , Hormônios Hipofisários/análise , Ratos , Ratos Sprague-Dawley
3.
Neuroscience ; 447: 63-73, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738883

RESUMO

Central oxytocin potently reduces food intake and is being pursued as a clinical treatment for obesity. While sexually dimorphic effects have been described for the effects of oxytocin on several behavioral outcomes, the role of sex in central oxytocin modulation of feeding behavior is poorly understood. Here we investigated the effects of sex, estrous cycle stage, and female sex hormones (estrogen, progesterone) on central oxytocin-mediated reduction of food intake in rats. Results show that while intracerebroventricular (ICV) oxytocin potently reduces chow intake in both male and female rats, these effects were more pronounced in males than in females. We next examined whether estrous cycle stage affects oxytocin's food intake-reducing effects in females. Results show that ICV oxytocin administration significantly reduces food intake during all estrous cycle stages except proestrous, suggesting that female sex hormones may modulate the feeding effects of oxytocin. Indeed, additional results reveal that estrogen, but not progesterone replacement, in ovariectomized rats abolishes oxytocin-mediated reductions in chow intake. Lastly, oxytocin receptor mRNA (Oxtr) quantification (via quantitative PCR) and anatomical localization (via fluorescent in situ hybridization) in previously established sites of action for oxytocin control of food intake revealed comparable Oxtr expression between male and female rats, suggesting that observed sex and estrous differences may be based on variations in ligand availability and/or binding. Overall, these data show that estrogen reduces the effectiveness of central oxytocin to inhibit food intake, suggesting that sex hormones and estrous cycle should be considered in clinical investigations of oxytocin for obesity treatment.


Assuntos
Ingestão de Alimentos , Estro , Ocitocina , Fatores Sexuais , Animais , Feminino , Hibridização in Situ Fluorescente , Masculino , Ocitocina/farmacologia , Ratos , Receptores de Ocitocina/genética
4.
Neuropharmacology ; 131: 487-496, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29191751

RESUMO

Social cues are potent regulators of feeding behavior, yet the neurobiological mechanisms through which social cues influence food intake are poorly understood. Here we investigate the hypothesis that the appetite-promoting gut-derived hormone, ghrelin, signals in the hippocampus to promote learned social aspects of feeding behavior. We utilized a procedure known as 'social transmission of food preference' (STFP) in which rats ('Observers') experience a social interaction with another rat ('Demonstrators') that recently consumed flavored/scented chow. STFP learning in Observer rats is indicated by a significant preference for the Demonstrator paired flavor of chow vs. a novel unpaired flavor of chow in a subsequent consumption choice test. Our results show that relative to vehicle treatment, ghrelin targeted to the ventral CA1 subregion of the hippocampus (vHP) enhanced STFP learning in rats. Additionally, STFP was impaired following peripheral injections of l-cysteine that reduce circulating ghrelin levels, suggesting that vHP ghrelin-mediated effects on STFP require peripheral ghrelin release. Finally, the endogenous relevance of vHP ghrelin receptor (GHSR-1A) signaling in STFP is supported by our data showing that STFP learning was eliminated following targeted viral vector RNA interference-mediated knockdown of vHP GHSR-1A mRNA. Control experiments indicate that vHP ghrelin-mediated STFP effects are not secondary to altered social exploration and food intake, nor to altered food preference learning based on nonsocial olfactory cues. Overall these data reveal a novel neurobiological system that promotes conditioned, social aspects of feeding behavior.


Assuntos
Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Hipocampo/metabolismo , Aprendizagem/fisiologia , Receptores de Grelina/metabolismo , Comportamento Social , Animais , Cisteína , Técnicas de Silenciamento de Genes , Grelina/metabolismo , Masculino , Percepção Olfatória/fisiologia , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de Grelina/genética
5.
Biol Psychiatry ; 82(11): 828-838, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28237459

RESUMO

BACKGROUND: The pancreatic- and brain-derived hormone amylin promotes negative energy balance and is receiving increasing attention as a promising obesity therapeutic. However, the neurobiological substrates mediating amylin's effects are not fully characterized. We postulated that amylin acts in the lateral dorsal tegmental nucleus (LDTg), an understudied neural processing hub for reward and homeostatic feeding signals. METHODS: We used immunohistochemical and quantitative polymerase chain reaction analyses to examine expression of the amylin receptor complex in rat LDTg tissue. Behavioral experiments were performed to examine the mechanisms underlying the hypophagic effects of amylin receptor activation in the LDTg. RESULTS: Immunohistochemical and quantitative polymerase chain reaction analyses show expression of the amylin receptor complex in the LDTg. Activation of LDTg amylin receptors by the agonist salmon calcitonin dose-dependently reduces body weight, food intake, and motivated feeding behaviors. Acute pharmacological studies and longer-term adeno-associated viral knockdown experiments indicate that LDTg amylin receptor signaling is physiologically and potentially preclinically relevant for energy balance control. Finally, immunohistochemical data indicate that LDTg amylin receptors are expressed on gamma-aminobutyric acidergic neurons, and behavioral results suggest that local gamma-aminobutyric acid receptor signaling mediates the hypophagia after LDTg amylin receptor activation. CONCLUSIONS: These findings identify the LDTg as a novel nucleus with therapeutic potential in mediating amylin's effects on energy balance through gamma-aminobutyric acid receptor signaling.


Assuntos
Agonistas dos Receptores da Amilina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Transdução de Sinais/fisiologia , Área Tegmentar Ventral/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Calcitonina/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , GABAérgicos/farmacologia , Masculino , Motivação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfopiruvato Hidratase/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Modificadoras da Atividade de Receptores/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/antagonistas & inibidores , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Front Nutr ; 3: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870735

RESUMO

BACKGROUND: Animal welfare and accurate data collection are equally important in rodent research. Housing influences study outcomes and can challenge studies that monitor feeding, so housing choice needs to be evidence-based. The goal of these studies was to (1) compare established measures of well-being between rodents housed in wire grid-bottom floors with a resting platform compared to solid-bottom floors with bedding and (2) determine whether presence of a chewable device (Nylabone) affects orexin-A-induced hyperphagia. METHODS: Rodents were crossed over to the alternate housing twice after 2-week periods. Time required to complete food intake measurements was recorded as an indicator of feasibility. Food intake stimulated by orexin-A was compared with and without the Nylabone. Blood corticosterone and hypothalamic BDNF were assessed. RESULTS: Housing had no effect on growth, energy expenditure, corticosterone, hypothalamic BDNF, behavior, and anxiety measures. Food intake was disrupted after housing cross-over. Time required to complete food intake measurements was significantly higher for solid-bottom bedded cages. The Nylabone had no effect on orexin-A-stimulated feeding. CONCLUSION: Well-being is not significantly different between rodents housed on grid-bottom floors and those in solid-bottom-bedded cages based on overall growth and feeding but alternating between housing confounds measures of feeding.

7.
Biochim Biophys Acta ; 1852(5): 951-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25550171

RESUMO

Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18:3 n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders.


Assuntos
Transtornos de Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Acetiltransferases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Encéfalo/metabolismo , Curcumina/administração & dosagem , Suplementos Nutricionais , Sinergismo Farmacológico , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Células Hep G2 , Humanos , Immunoblotting , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos Sprague-Dawley , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA