Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L160-L172, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771132

RESUMO

The alveolar type II epithelial cells (AEC2s) act as stem cells in the lung for alveolar epithelial maintenance and repair. Chemokine C-X-C motif chemokine 10 (CXCL10) is expressed in injured tissues, modulating multiple cellular functions. AEC2s, previously reported to release chemokines to recruit leukocytes, were found in our study to secrete CXCL10 after bleomycin injury. We found that Sftpc-Cxcl10 transgenic mice were protected from bleomycin injury. The transgenic mice showed an increase in the AEC2 population in the lung by flow cytometry analysis. Both endogenous and exogenous CXCL10 promoted the colony formation efficiency of AEC2s in a three-dimensional (3-D) organoid growth assay. We identified that the regenerative effect of CXCL10 was CXCR3 independent using Cxcr3-deficient mice, but it was related to the TrkA pathway. Binding experiments showed that CXCL10 interacted with TrkA directly and reversibly. This study demonstrates a previously unidentified AEC2 autocrine signaling of CXCL10 to promote their regeneration and proliferation, probably involving a CXCR3-independent TrkA pathway.NEW & NOTEWORTHY CXCL10 may aid in lung injury recovery by promoting the proliferation of alveolar stem cells and using a distinct regulatory pathway from the classical one.


Assuntos
Células Epiteliais Alveolares , Quimiocina CXCL10 , Receptores CXCR3 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Proliferação de Células , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Regeneração , Transdução de Sinais
2.
Am J Respir Cell Mol Biol ; 71(2): 229-241, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38635761

RESUMO

Aging poses a global public health challenge, which is linked to the rise of age-related lung diseases. The precise understanding of the molecular and genetic changes in the aging lung that elevate the risk of acute and chronic lung diseases remains incomplete. Alveolar type II (AT2) cells are stem cells that maintain epithelial homeostasis and repair the lung after injury. AT2 progenitor function decreases with aging. The maintenance of AT2 function requires niche support from other cell types, but little has been done to characterize alveolar alterations with aging in the AT2 niche. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged AT2 cells demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 (Activator Protein-1) transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in collagen and elastin transcription and a loss of support to epithelial cell stemness. The decline of the AT2 niche is further exacerbated by a dysregulated genetic program in macrophages and dysregulated communications between AT2 and macrophages in aged human lungs. These findings highlight the dysregulations observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.


Assuntos
Envelhecimento , Células Epiteliais Alveolares , Pulmão , Nicho de Células-Tronco , Transcriptoma , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Envelhecimento/genética , Pulmão/metabolismo , Pulmão/patologia , Transcriptoma/genética , Idoso , Pessoa de Meia-Idade , Masculino , Senescência Celular/genética , Perfilação da Expressão Gênica , Feminino , Adulto , Células-Tronco/metabolismo
3.
Am J Respir Cell Mol Biol ; 71(2): 242-253, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657143

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aging-associated interstitial lung disease resulting from repeated epithelial injury and inadequate epithelial repair. Alveolar type II cells (AEC2s) are progenitor cells that maintain epithelial homeostasis and repair the lung after injury. In the current study, we assessed lipid metabolism in AEC2s from human lungs of patients with IPF and healthy donors, as well as AEC2s from bleomycin-injured young and old mice. Through single-cell RNA sequencing, we observed that lipid metabolism-related genes were downregulated in IPF AEC2s and bleomycin-injured mouse AEC2s. Aging aggravated this decrease and hindered recovery of lipid metabolism gene expression in AEC2s after bleomycin injury. Pathway analyses revealed downregulation of genes related to lipid biosynthesis and fatty acid ß-oxidation in AEC2s from IPF lungs and bleomycin-injured, old mouse lungs compared with the respective controls. We confirmed decreased cellular lipid content in AEC2s from IPF lungs and bleomycin-injured, old mouse lungs using immunofluorescence staining and flow cytometry. Futhermore, we show that lipid metabolism was associated with AEC2 progenitor function. Lipid supplementation and PPARγ (peroxisome proliferator activated receptor γ) activation promoted progenitor renewal capacity of both human and mouse AEC2s in three-dimensional organoid cultures. Lipid supplementation also increased AEC2 proliferation and expression of SFTPC in AEC2s. In summary, we identified a lipid metabolism deficiency in AEC2s from lungs of patients with IPF and bleomycin-injured old mice. Restoration of lipid metabolism homeostasis in AEC2s might promote AEC2 progenitor function and offer new opportunities for therapeutic approaches to IPF.


Assuntos
Envelhecimento , Células Epiteliais Alveolares , Bleomicina , Fibrose Pulmonar Idiopática , Metabolismo dos Lipídeos , Células-Tronco , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Animais , Humanos , Camundongos , Células-Tronco/metabolismo , Células-Tronco/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , PPAR gama/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Feminino
4.
Am J Respir Crit Care Med ; 210(4): 435-443, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484130

RESUMO

Rationale: Idiopathic pulmonary fibrosis is a fatal and progressive disease with limited treatment options. Objectives: We sought to assess the efficacy and safety of CC-90001, an oral inhibitor of c-Jun N-terminal kinase 1, in patients with idiopathic pulmonary fibrosis. Methods: In a Phase 2, randomized (1:1:1), double-blind, placebo-controlled study (ClinicalTrials.gov ID: NCT03142191), patients received CC-90001 (200 or 400 mg) or placebo once daily for 24 weeks. Background antifibrotic treatment (pirfenidone) was allowed. The primary endpoint was change in the percentage of predicted FVC (ppFVC) from baseline to Week 24; secondary endpoints included safety. Measurements and Main Results: In total, 112 patients received at least one dose of study drug. The study was terminated early because of a strategic decision made by the sponsor. Ninety-one patients (81%) completed the study. The least-squares mean changes from baseline in ppFVC at Week 24 were -3.1% (placebo), -2.1% (200 mg), and -1.0% (400 mg); the differences compared with placebo were 1.1% (200 mg; 95% confidence interval: -2.1, 4.3; P = 0.50) and 2.2% (400 mg; 95% confidence interval: -1.1, 5.4; P = 0.19). Adverse event frequency was similar in patients in the combined CC-90001 arms versus placebo. The most common adverse events were nausea, diarrhea, and vomiting, which were more frequent in patients in CC-90001 arms versus placebo. Fewer patients in the CC-90001 arms than in the placebo arm experienced cough and dyspnea. Conclusions: Treatment with CC-90001 over 24 weeks led to numerical improvements in ppFVC in patients with idiopathic pulmonary fibrosis compared with placebo. CC-90001 was generally well tolerated, which was consistent with previous studies. Clinical trial registered with www.clinicaltrials.gov (NCT03142191).


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Método Duplo-Cego , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Resultado do Tratamento , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Adulto
5.
Science ; 383(6685): eadd6371, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386758

RESUMO

The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Rim , Insuficiência Renal Crônica , Fatores de Transcrição SOX9 , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Células Epiteliais , Fibrose , Rim/patologia , Regeneração , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fatores de Transcrição SOX9/genética , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo
6.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398304

RESUMO

Aging poses a global public health challenge, associated with molecular and physiological changes in the lungs. It increases susceptibility to acute and chronic lung diseases, yet the underlying molecular and cellular drivers in aged populations are not fully appreciated. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged alveolar epithelial cells, including both alveolar type II (AT2) and type I (AT1) cells, demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in Collagen and Elastin transcription. The decline of the AT2 niche is further exacerbated by a weakened endothelial cell phenotype and a dysregulated genetic program in macrophages. These findings highlight the dysregulation observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.

7.
Am J Physiol Cell Physiol ; 325(2): C483-C495, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458437

RESUMO

Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Humanos , Idoso , Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Senescência Celular , Envelhecimento , Células-Tronco/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo
8.
Elife ; 122023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314162

RESUMO

Aging is a critical risk factor in idiopathic pulmonary fibrosis (IPF). Dysfunction and loss of type 2 alveolar epithelial cells (AEC2s) with failed regeneration is a seminal causal event in the pathogenesis of IPF, although the precise mechanisms for their regenerative failure and demise remain unclear. To systematically examine the genomic program changes of AEC2s in aging and after lung injury, we performed unbiased single-cell RNA-seq analyses of lung epithelial cells from uninjured or bleomycin-injured young and old mice, as well as from lungs of IPF patients and healthy donors. We identified three AEC2 subsets based on their gene signatures. Subset AEC2-1 mainly exist in uninjured lungs, while subsets AEC2-2 and AEC2-3 emerged in injured lungs and increased with aging. Functionally, AEC2 subsets are correlated with progenitor cell renewal. Aging enhanced the expression of the genes related to inflammation, stress responses, senescence, and apoptosis. Interestingly, lung injury increased aging-related gene expression in AEC2s even in young mice. The synergistic effects of aging and injury contributed to impaired AEC2 recovery in aged mouse lungs after injury. In addition, we also identified three subsets of AEC2s from human lungs that formed three similar subsets to mouse AEC2s. IPF AEC2s showed a similar genomic signature to AEC2 subsets from bleomycin-injured old mouse lungs. Taken together, we identified synergistic effects of aging and AEC2 injury in transcriptomic and functional analyses that promoted fibrosis. This study provides new insights into the interactions between aging and lung injury with interesting overlap with diseased IPF AEC2 cells.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Pulmão/patologia , Envelhecimento , Bleomicina/toxicidade
9.
Am J Respir Cell Mol Biol ; 69(1): 45-56, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36927333

RESUMO

Progressive pulmonary fibrosis results from a dysfunctional tissue repair response and is characterized by fibroblast proliferation, activation, and invasion and extracellular matrix accumulation. Lung fibroblast heterogeneity is well recognized. With single-cell RNA sequencing, fibroblast subtypes have been reported by recent studies. However, the roles of fibroblast subtypes in effector functions in lung fibrosis are not well understood. In this study, we incorporated the recently published single-cell RNA-sequencing datasets on murine lung samples of fibrosis models and human lung samples of fibrotic diseases and analyzed fibroblast gene signatures. We identified and confirmed the novel fibroblast subtypes we reported recently across all samples of both mouse models and human lung fibrotic diseases, including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease, and coronavirus disease (COVID-19). Furthermore, we identified specific cell surface proteins for each fibroblast subtype through differential gene expression analysis, which enabled us to isolate primary cells representing distinct fibroblast subtypes by flow cytometry sorting. We compared matrix production, including fibronectin, collagen, and hyaluronan, after profibrotic factor stimulation and assessed the invasive capacity of each fibroblast subtype. Our results suggest that in addition to myofibroblasts, lipofibroblasts and Ebf1+ (Ebf transcription factor 1+) fibroblasts are two important fibroblast subtypes that contribute to matrix deposition and also have enhanced invasive, proliferative, and contraction phenotypes. The histological locations of fibroblast subtypes are identified in healthy and fibrotic lungs by these cell surface proteins. This study provides new insights to inform approaches to targeting lung fibroblast subtypes to promote the development of therapeutics for lung fibrosis.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , COVID-19/metabolismo , Fibroblastos/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/patologia , Fibrose , Proteínas de Membrana/metabolismo
10.
Am J Respir Cell Mol Biol ; 68(3): 302-313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36318668

RESUMO

Loss of epithelial integrity, bronchiolarization, and fibroblast activation are key characteristics of idiopathic pulmonary fibrosis (IPF). Prolonged accumulation of basal-like cells in IPF may impact the fibrotic niche to promote fibrogenesis. To investigate their role in IPF, basal cells were isolated from IPF explant and healthy donor lung tissues. Single-cell RNA sequencing was used to assess differentially expressed genes in basal cells. Basal cell and niche interaction was demonstrated with the sLP-mCherry niche labeling system. Luminex assays were used to assess cytokines secreted by basal cells. The role of basal cells in fibroblast activation was studied. Three-dimensional organoid culture assays were used to interrogate basal cell effects on AEC2 (type 2 alveolar epithelial cell) renewal capacity. Perturbation was used to investigate WNT7A function in vitro and in a repetitive bleomycin model in vivo. We found that WNT7A is highly and specifically expressed in basal-like cells. Proteins secreted by basal cells can be captured by neighboring fibroblasts and AEC2s. Basal cells or basal cell-conditioned media activate fibroblasts through WNT7A. Basal cell-derived WNT7A inhibits AEC2 progenitor cell renewal in three-dimensional organoid cultures. Neutralizing antibodies against WNT7A or a small molecule inhibitor of Frizzled signaling abolished basal cell-induced fibroblast activation and attenuated lung fibrosis in mice. In summary, basal cells and basal cell-derived WNT7A are key components of the fibrotic niche, providing a unique non-stem cell function of basal cells in IPF progression and a novel targeting strategy for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Camundongos , Bleomicina/farmacologia , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Transdução de Sinais
11.
J Exp Med ; 219(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35980387

RESUMO

Progressive tissue fibrosis, including idiopathic pulmonary fibrosis (IPF), is characterized by excessive recruitment of fibroblasts to sites of tissue injury and unremitting extracellular matrix deposition associated with severe morbidity and mortality. However, the molecular mechanisms that control progressive IPF have yet to be fully determined. Previous studies suggested that invasive fibroblasts drive disease progression in IPF. Here, we report profiling of invasive and noninvasive fibroblasts from IPF patients and healthy donors. Pathway analysis revealed that the activated signatures of the invasive fibroblasts, the top of which was ERBB2 (HER2), showed great similarities to those of metastatic lung adenocarcinoma cancer cells. Activation of HER2 in normal lung fibroblasts led to a more invasive genetic program and worsened fibroblast invasion and lung fibrosis, while antagonizing HER2 signaling blunted fibroblast invasion and ameliorated lung fibrosis. These findings suggest that HER2 signaling may be a key driver of fibroblast invasion and serve as an attractive target for therapeutic intervention in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Neoplasias/patologia
12.
J Clin Invest ; 132(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35389887

RESUMO

Type 2 alveolar epithelial cells (AEC2s) function as progenitor cells in the lung. We have shown previously that failure of AEC2 regeneration results in progressive lung fibrosis in mice and is a cardinal feature of idiopathic pulmonary fibrosis (IPF). In this study, we identified deficiency of a specific zinc transporter, SLC39A8 (ZIP8), in AEC2s from both IPF lungs and lungs of old mice. Loss of ZIP8 expression was associated with impaired renewal capacity of AEC2s and enhanced lung fibrosis. ZIP8 regulation of AEC2 progenitor function was dependent on SIRT1. Replenishment with exogenous zinc and SIRT1 activation promoted self-renewal and differentiation of AEC2s from lung tissues of IPF patients and old mice. Deletion of Zip8 in AEC2s in mice resulted in impaired AEC2 renewal, increased susceptibility to bleomycin injury, and development of spontaneous lung fibrosis. Therapeutic strategies to restore zinc metabolism and appropriate SIRT1 signaling could improve AEC2 progenitor function and mitigate ongoing fibrogenesis.


Assuntos
Proteínas de Transporte de Cátions , Fibrose Pulmonar Idiopática , Envelhecimento , Células Epiteliais Alveolares , Animais , Bleomicina , Proteínas de Transporte de Cátions/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células-Tronco/metabolismo , Zinco/metabolismo
13.
Stem Cell Res Ther ; 13(1): 64, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130980

RESUMO

Recent advances in single-cell RNA sequencing (scRNA-seq) and epithelium lineage labeling have yielded identification of multiple abnormal epithelial progenitor populations during alveolar type 2 (ATII) cell differentiation into alveolar type 1 (ATI) cells during regenerative lung post-fibrotic injury. These abnormal cells include basaloid/basal-like cells, ATII transition cells, and persistent epithelial progenitors (PEPs). These cells occurred and accumulated during the regeneration of distal airway and alveoli in response to both chronic and acute pulmonary injury. Among the alveolar epithelial progenitors, PEPs express a distinct Krt8+ phenotype that is rarely found in intact alveoli. However, post-injury, the Krt8+ phenotype is seen in dysplastic epithelial cells. Fully understanding the characteristics and functions of these newly found, injury-induced abnormal behavioral epithelial progenitors and the signaling pathways regulating their phenotype could potentially point the way to unique therapeutic targets for fibrosing lung diseases. This review summarizes recent advances in understanding these epithelial progenitors as they relate to uncovering regenerative mechanisms.


Assuntos
Lesão Pulmonar , Células Epiteliais Alveolares , Células Epiteliais , Humanos , Pulmão , Alvéolos Pulmonares
14.
BMJ Open Respir Res ; 9(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35058236

RESUMO

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal interstitial lung disease (ILD); other ILDs have a progressive, fibrotic phenotype (PF-ILD). Antifibrotic agents can slow but not stop disease progression in patients with IPF or PF-ILD. c-Jun N-terminal kinases (JNKs) are stress-activated protein kinases implicated in the underlying mechanisms of fibrosis, including epithelial cell death, inflammation and polarisation of profibrotic macrophages, fibroblast activation and collagen production. CC-90001, an orally administered (PO), one time per day, JNK inhibitor, is being evaluated in IPF and PF-ILD. METHODS AND ANALYSIS: This is a phase 2, randomised, double-blind, placebo-controlled study evaluating efficacy and safety of CC-90001 in patients with IPF (main study) and patients with PF-ILD (substudy). Both include an 8-week screening period, a 24-week treatment period, up to an 80-week active-treatment extension and a 4-week post-treatment follow-up. Patients with IPF (n=165) will be randomised 1:1:1 to receive 200 mg or 400 mg CC-90001 or placebo administered PO one time per day; up to 25 patients/arm will be permitted concomitant pirfenidone use. Forty-five patients in the PF-ILD substudy will be randomised 2:1 to receive 400 mg CC-90001 or placebo. The primary endpoint is change in per cent predicted forced vital capacity from baseline to Week 24 in patients with IPF. ETHICS AND DISSEMINATION: This study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles and local ethical and legal requirements. Results will be reported in a peer-reviewed publication. TRIAL REGISTRATION NUMBER: NCT03142191.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Inibidores de Proteínas Quinases , Ensaios Clínicos Fase II como Assunto , Fibrose , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/etiologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Capacidade Vital
15.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108218

RESUMO

Recent studies have identified impaired type 2 alveolar epithelial cell (ATII) renewal in idiopathic pulmonary fibrosis (IPF) human organoids and severe fibrosis when ATII is defective in mice. ATIIs function as progenitor cells and require supportive signals from the surrounding mesenchymal cells. The mechanisms by which mesenchymal cells promote ATII progenitor functions in lung fibrosis are incompletely understood. We identified growth hormone receptor (GHR) is mainly expressed in mesenchymal cells, and its expression is substantially decreased in IPF lungs. Higher levels of GHR expression correlated with better lung function in patients with IPF. Profibrotic mesenchymal cells retarded ATII growth and were associated with suppressed vesicular GHR expression. Vesicles enriched with Ghr promote ATII proliferation and diminished pulmonary fibrosis in mesenchymal Ghr-deficient mice. Our findings demonstrate a previously unidentified mesenchymal paracrine signaling coordinated by GHR that is capable of supporting ATII progenitor cell renewal and limiting the severity of lung fibrosis.


Assuntos
Células Epiteliais Alveolares/fisiologia , Fibrose Pulmonar Idiopática , Animais , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Síndrome de Laron/metabolismo , Pulmão/metabolismo , Camundongos , Células-Tronco/metabolismo
16.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945505

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor EphA3/metabolismo , Receptores CCR10/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Sistemas CRISPR-Cas , Quimiocinas CC/metabolismo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Fibrose Pulmonar Idiopática/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
17.
Am J Respir Crit Care Med ; 203(6): 707-717, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991815

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is an insidious and fatal interstitial lung disease associated with declining pulmonary function. Accelerated aging, loss of epithelial progenitor cell function and/or numbers, and cellular senescence are implicated in the pathogenies of IPF.Objectives: We sought to investigate the role of alveolar type 2 (AT2) cellular senescence in initiation and/or progression of pulmonary fibrosis and therapeutic potential of targeting senescence-related pathways and senescent cells.Methods: Epithelial cells of 9 control donor proximal and distal lung tissues and 11 IPF fibrotic lung tissues were profiled by single-cell RNA sequencing to assesses the contribution of epithelial cells to the senescent cell fraction for IPF. A novel mouse model of conditional AT2 cell senescence was generated to study the role of cellular senescence in pulmonary fibrosis.Measurements and Main Results: We show that AT2 cells isolated from IPF lung tissue exhibit characteristic transcriptomic features of cellular senescence. We used conditional loss of Sin3a in adult mouse AT2 cells to initiate a program of p53-dependent cellular senescence, AT2 cell depletion, and spontaneous, progressive pulmonary fibrosis. We establish that senescence rather than loss of AT2 cells promotes progressive fibrosis and show that either genetic or pharmacologic interventions targeting p53 activation or senescence block fibrogenesis.Conclusions: Senescence of AT2 cells is sufficient to drive progressive pulmonary fibrosis. Early attenuation of senescence-related pathways and elimination of senescent cells are promising therapeutic approaches to prevent pulmonary fibrosis.


Assuntos
Envelhecimento/patologia , Células Epiteliais Alveolares/patologia , Senescência Celular , Fibrose Pulmonar Idiopática/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
18.
Am J Respir Crit Care Med ; 202(11): 1540-1550, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32692579

RESUMO

Rationale: Declining lung function in patients with interstitial lung disease is accompanied by epithelial remodeling and progressive scarring of the gas-exchange region. There is a need to better understand the contribution of basal cell hyperplasia and associated mucosecretory dysfunction to the development of idiopathic pulmonary fibrosis (IPF).Objectives: We sought to decipher the transcriptome of freshly isolated epithelial cells from normal and IPF lungs to discern disease-dependent changes within basal stem cells.Methods: Single-cell RNA sequencing was used to map epithelial cell types of the normal and IPF human airways. Organoid and air-liquid interface cultures were used to investigate functional properties of basal cell subtypes.Measurements and Main Results: We found that basal cells included multipotent and secretory primed subsets in control adult lung tissue. Secretory primed basal cells include an overlapping molecular signature with basal cells obtained from the distal lung tissue of IPF lungs. We confirmed that NOTCH2 maintains undifferentiated basal cells and restricts basal-to-ciliated differentiation, and we present evidence that NOTCH3 functions to restrain secretory differentiation.Conclusions: Basal cells are dynamically regulated in disease and are specifically biased toward the expansion of the secretory primed basal cell subset in IPF. Modulation of basal cell plasticity may represent a relevant target for therapeutic intervention in IPF.


Assuntos
Plasticidade Celular , Proliferação de Células/genética , Autorrenovação Celular/genética , Células Epiteliais/citologia , Fibrose Pulmonar Idiopática/genética , Mucosa Respiratória/citologia , Idoso , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Membrana Basal , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Pessoa de Meia-Idade , RNA-Seq , Mucosa Respiratória/metabolismo , Análise de Célula Única , Transcriptoma , Adulto Jovem
19.
Int J Mol Sci ; 21(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218238

RESUMO

: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Morte Celular , Autorrenovação Celular , Fibroblastos , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Transdução de Sinais
20.
Thorax ; 75(1): 78-80, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31611341

RESUMO

In this retrospective study of a randomised trial of simtuzumab in idiopathic pulmonary fibrosis (IPF), prodromal decline in forced vital capacity (FVC) was significantly associated with increased risk of mortality, respiratory and all-cause hospitalisations, and categorical disease progression. Predictive modelling of progression-free survival event risk was used to assess the effect of population enrichment for patients at risk of rapid progression of IPF; C-index values were 0.64 (death), 0.69 (disease progression), and 0.72 (adjudicated respiratory hospitalisation) and 0.76 (all-cause hospitalisation). Predictive modelling may be a useful tool for improving efficiency of clinical trials with categorical end points.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Idoso , Ensaios Clínicos Fase II como Assunto , Progressão da Doença , Feminino , Humanos , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Testes de Função Respiratória , Estudos Retrospectivos , Fatores de Risco , Falha de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA