Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 18(4): 1731-1739, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799856

RESUMO

Background/purpose: The mineralized tissue-inductive ability and anti-inflammatory properties of hydraulic calcium silicate-based (HCSB) sealers have not been fully elucidated. This study aimed to evaluate the effects of the HCSB sealers Bio-C sealer (BioC), Well-Root ST (WST), and EndoSequence BC sealer (BC), on osteoblastic differentiation/mineralization and proinflammatory cytokine synthesis by macrophages. Materials and methods: Diluted extracts of set sealers or calcium chloride solutions of approximately equivalent Ca2+ concentrations were applied to a mouse osteoblastic cell line (Kusa-A1 cells) and lipopolysaccharide-stimulated mouse macrophage cell line (RAW264.7 cells). Expressions of osteoblastic markers in Kusa-A1 cells and proinflammatory cytokines in RAW264.7 cells were evaluated by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Mineralized nodules were detected by Alizarin red S staining. Cell proliferation was assessed by WST-8 assay and cell attachment on set sealers was examined by scanning electron microscopy. Results: The three sealer extracts significantly upregulated osteocalcin and osteopontin mRNA, and promoted significant mineralized nodule formation in Kusa-A1 cells. The three sealer extracts significantly downregulated the mRNA expressions of interleukin (IL)-1α, IL-1ß, IL-6, and tumor necrosis factor (TNF)-α and protein levels of IL-6 and TNF-α in RAW264.7 cells. Calcium chloride solutions induced osteoblastic differentiation/mineralization. AH Plus Jet (a control sealer) extract did not. The three HCSB sealers did not interfere with the growth and attachment of Kusa-A1 cells. Conclusion: BioC, WST, and BC were biocompatible, upregulated osteoblastic differentiation/mineralization, and downregulated proinflammatory cytokine expression. Ca2+ released from HCSB sealers might be involved, at least in part, in the induction of osteoblastic differentiation/mineralization.

2.
Sci Rep ; 12(1): 5176, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338195

RESUMO

Tissue-resident macrophages expressing lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) are found in multiple tissues and organs. We aimed to evaluate the dynamics and biological functions of LYVE-1+ macrophages in dental pulp during post-injury tissue remodeling. Immunofluorescence staining of mouse embryos revealed that LYVE-1+ macrophages colonized dental pulp before birth. In mature rat molar dental pulp, LYVE-1+ macrophages were the main subset of macrophages expressing CD163, an M2 marker, and were distributed throughout the tissue. In response to dental pulp injury induced by cavity preparation, LYVE-1+ macrophages quickly disappeared from the affected area of the pulp and gradually repopulated during the wound healing process. RAW264.7 mouse macrophages cultured with a mixture of macrophage colony-stimulating factor, interleukin-4, and dexamethasone increased LYVE-1 expression, whereas lipopolysaccharide-stimulation decreased LYVE-1 expression. Enforced expression of Lyve1 in RAW264.7 cells resulted in increased mRNA expression of matrix metalloproteinase 2 (Mmp2), Mmp9, and vascular endothelial growth factor A (Vegfa). Lyve1-expressing macrophages promoted the migration and tube formation of human umbilical vein endothelial cells. In conclusion, LYVE-1+ tissue-resident M2-like macrophages in dental pulp showed dynamism in response to pulp injury, and possibly play an important role in angiogenesis during wound healing and tissue remodeling.


Assuntos
Metaloproteinase 2 da Matriz , Fator A de Crescimento do Endotélio Vascular , Animais , Polpa Dentária/metabolismo , Células Endoteliais/metabolismo , Cinética , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Sci Rep ; 12(1): 682, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027586

RESUMO

Accelerated dental pulp mineralization is a common complication in avulsed/luxated teeth, although the mechanisms underlying this remain unclear. We hypothesized that hypoxia due to vascular severance may induce osteo/odontoblast differentiation of dental pulp stem cells (DPSCs). This study examined the role of B-cell CLL/lymphoma 9 (BCL9), which is downstream of hypoxia-inducible factor 1α (HIF1α) and a Wnt/ß-catenin transcriptional cofactor, in the osteo/odontoblastic differentiation of human DPSCs (hDPSCs) under hypoxic conditions. hDPSCs were isolated from extracted healthy wisdom teeth. Hypoxic conditions and HIF1α overexpression induced significant upregulation of mRNAs for osteo/odontoblast markers (RUNX2, ALP, OC), BCL9, and Wnt/ß-catenin signaling target genes (AXIN2, TCF1) in hDPSCs. Overexpression and suppression of BCL9 in hDPSCs up- and downregulated, respectively, the mRNAs for AXIN2, TCF1, and the osteo/odontoblast markers. Hypoxic-cultured mouse pulp tissue explants showed the promotion of HIF1α, BCL9, and ß-catenin expression and BCL9-ß-catenin co-localization. In addition, BCL9 formed a complex with ß-catenin in hDPSCs in vitro. This study demonstrated that hypoxia/HIF1α-induced osteo/odontoblast differentiation of hDPSCs was partially dependent on Wnt/ß-catenin signaling, where BCL9 acted as a key mediator between HIF1α and Wnt/ß-catenin signaling. These findings may reveal part of the mechanisms of dental pulp mineralization after traumatic dental injury.


Assuntos
Diferenciação Celular/genética , Polpa Dentária/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Odontoblastos/fisiologia , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Calcificação Fisiológica/genética , Células Cultivadas , Polpa Dentária/fisiologia , Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia
4.
Dent Mater J ; 41(1): 150-158, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34602587

RESUMO

A prototype surface-reaction-type pre-reacted glass-ionomer (S-PRG) filler containing root canal sealer (S-PRG sealer) exhibits bioactive potential by releasing multiple ions. This study explored the suppressive effects and modes of action of S-PRG sealer extracts on proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Expression of proinflammatory cytokines was evaluated by RT-qPCR and ELISA. Expression of phosphorylated nuclear factor-kappa B (p-NF-kB) p65 was evaluated by western blotting. S-PRG sealer extracts significantly downregulated mRNA expression levels of interleukin (IL)-1α, IL-6, and TNF-α in LPS-stimulated RAW264.7 cells; the extracts also reduced the levels of IL-6 protein and p-NF-kB. In order to verify that Zn2+ was responsible for downregulation of proinflammatory cytokine expression, N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) was used as a heavy metal chelator with strong affinity for Zn2+. These effects were mitigated by TPEN. The application of ZnCl2 reproduced the actions of S-PRG sealer extracts. These data suggest that S-PRG sealer has anti-inflammatory potential involving heavy metal ions such as Zn2+.


Assuntos
Cimentos de Ionômeros de Vidro , Lipopolissacarídeos , Cavidade Pulpar , Lipopolissacarídeos/farmacologia , Macrófagos
5.
Biochem Biophys Res Commun ; 522(2): 308-314, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31767145

RESUMO

Hypoxia-inducible factor 1 alpha (HIF1α) is a transcriptional factor that plays a key role in the regulation of various molecules expressed in hypoxic conditions. Ischemic/hypoxic conditions are regarded as a distinct characteristic of dental pulp inflammation due to the encasement of pulp tissue within the rigid tooth structure. This study was performed to examine the role of HIF1α in the regulation of interleukin (IL)-6, a proinflammatory cytokine expressed in inflamed dental pulp, in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). LPS stimulation promoted the expression of IL-6 in hDPCs, while HIF1α suppressed the expression of IL-6. Moreover, HIF1α induced suppressor of cytokine signaling 3 (SOCS3) expression in LPS-stimulated hDPCs, and SOCS3 activity led to downregulate expression of CCAAT enhancer-binding protein beta (CEBPß), an inducer of IL-6. LPS stimulation promoted HIF1α expression in hDPCs and mouse pulp tissue explants cultured under hypoxic conditions. These findings suggest that HIF1α negatively regulates IL-6 synthesis in LPS-stimulated hDPCs via upregulation of SOCS3 and subsequent downregulation of CEBPß.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Polpa Dentária/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Humanos , Interleucina-6/genética , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Sci Rep ; 9(1): 5430, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931957

RESUMO

Dental pulp stem cells (DPSCs) are a good source for tissue regeneration, however, the number of DPSCs in the pulp tissue is limited. Cell propagation is essential for tissue engineering using DPSCs and the cell culture conditions may affect the properties of DPSCs. The purpose of this study was to analyze the effect of cell culture condition, especially dense culture condition, on the property and differentiation pathway of DPSCs. We cultured DPSCs under sparse (sDPSCs; 5 × 103 cells/cm2) or dense (dDPSCs; 1 × 105 cells/cm2) conditions for 4 days and compared their properties. The populations of CD73+ and CD105+ cells were significantly decreased in dDPSCs. Both groups showed multi-differentiation potential, but mineralized nodule formation was enhanced in dDPSCs. The phosphorylation of focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) proteins was promoted in dDPSCs, and alkaline phosphatase (ALP) mRNA expression in dDPSCs was abolished in the presence of pan-PI3K and FAK inhibitors. dDPSCs implanted into mouse bone cavities induced more mineralized tissue formation than sDPSCs and control. These findings indicate that dense culture conditions modified the properties of DPSCs and gave rise to osteogenic-lineage commitment via integrin signaling and suggest that dense culture conditions favor the propagation of DPSCs to be used for mineralized tissue regeneration.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Fosfatase Alcalina/genética , Animais , Técnicas de Cultura de Células , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Integrinas/metabolismo , Camundongos , RNA Mensageiro/genética , Transdução de Sinais
7.
J Endod ; 43(9S): S31-S34, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28781092

RESUMO

Dental pulp mesenchymal stem cells (DPMSCs) highly express mesenchymal stem cell markers and possess the potential to differentiate into neural cells, osteoblasts, adipocytes, and chondrocytes. Thus, DPMSCs are considered suitable for tissue regeneration. The colony isolation method has commonly been used to collect relatively large amounts of heterogeneous DPMSCs. Homogenous DPMSCs can be isolated by fluorescence-activated cell sorting using antibodies against mesenchymal stem cell markers, although this method yields a limited number of cells. Both quality and quantity of DPMSCs are critical to regenerative therapy, and cell culture methods need to be improved. We thus investigated the properties of DPMSCs cultured with different methods. DPMSCs in a three-dimensional spheroid culture system, which is similar to the hanging drop culture for differentiation of embryonic stem cells, showed upregulation of odonto-/osteoblastic markers and mineralized nodule formation. This suggests that this three-dimensional spheroid culturing system for DPMSCs may be suitable for inducing hard tissues. We further examined the effect of cell culture density on the properties of DPMSCs because the properties of stem cells can be altered depending on the cell density. DPMSCs cultured under the confluent cell density condition showed slight downregulation of some mesenchymal stem cell markers compared with those under the sparse condition. The ability of DPMSCs to differentiate into hard tissue-forming cells was found to be enhanced in the confluent condition, suggesting that the confluent culture condition may not be suitable for maintaining the stemness of DPMSCs. When DPMSCs are to be used for hard tissue regeneration, dense followed by sparse cell culture conditions may be a better alternative strategy.


Assuntos
Polpa Dentária/citologia , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA