Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682690

RESUMO

Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury. The use of stem cells, associated or not with scaffolds, has shown potential in cartilage regeneration. However, it is currently known that the effect of stem cells occurs mainly through the secretion of paracrine factors that act on local cells. In this review, we will address the use of the secretome-a set of bioactive factors (soluble factors and extracellular vesicles) secreted by the cells-of mesenchymal stem cells as a treatment for cartilage regeneration. We will also discuss methodologies for priming the secretome to enhance the chondroregenerative potential. In addition, considering the difficulty of delivering therapies to the injured cartilage site, we will address works that use hydrogels functionalized with growth factors and secretome components. We aim to show that secretome-functionalized hydrogels can be an exciting approach to cell-free cartilage repair therapy.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Secretoma , Engenharia Tecidual
2.
Artigo em Inglês | MEDLINE | ID: mdl-32425992

RESUMO

BACKGROUND: Neuroblastoma is a pediatric tumor with a mortality rate of 40% in the most aggressive cases. Tumor microenvironment components as immune cells contribute to the tumor progression; thereby, the modulation of immune cells to a pro-inflammatory and antitumoral profile could potentialize the immunotherapy, a suggested approach for high-risk patients. Preview studies showed the antitumoral potential of BJcuL, a C- type lectin isolated from Bothrops jararacussu venom. It was able to induce immunomodulatory responses, promoting the rolling and adhesion of leukocytes and the activation of neutrophils. METHODS: SK-N-SH cells were incubated with conditioned media (CM) obtained during the treatment of neutrophils with BJcuL and fMLP, a bacteria-derived peptide highly effective for activating neutrophil functions. Then we evaluated the effect of the same stimulation on the co-cultivation of neutrophils and SK-N-SH cells. Tumor cells were tested for viability, migration, and invasion potential. RESULTS: In the viability assay, only neutrophils treated with BJcuL (24 h) and cultivated with SK-N-SH were cytotoxic. Migration of tumor cells decreased when incubated directly (p < 0.001) or indirectly (p < 0.005) with untreated neutrophils. When invasion potential was evaluated, neutrophils incubated with BJcuL reduced the total number of colonies of SK-N-SH cells following co-cultivation for 24 h (p < 0.005). Treatment with CM resulted in decreased anchorage-free survival following 24 h of treatment (p < 0.001). CONCLUSION: Data demonstrated that SK-N-SH cells maintain their migratory potential in the face of neutrophil modulation by BJcuL, but their invasive capacity was significantly reduced.

3.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;262020.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484765

RESUMO

ABSTRACT Background: Neuroblastoma is a pediatric tumor with a mortality rate of 40% in the most aggressive cases. Tumor microenvironment components as immune cells contribute to the tumor progression; thereby, the modulation of immune cells to a pro-inflammatory and antitumoral profile could potentialize the immunotherapy, a suggested approach for high-risk patients. Preview studies showed the antitumoral potential of BJcuL, a C- type lectin isolated from Bothrops jararacussu venom. It was able to induce immunomodulatory responses, promoting the rolling and adhesion of leukocytes and the activation of neutrophils. Methods: SK-N-SH cells were incubated with conditioned media (CM) obtained during the treatment of neutrophils with BJcuL and fMLP, a bacteria-derived peptide highly effective for activating neutrophil functions. Then we evaluated the effect of the same stimulation on the co-cultivation of neutrophils and SK-N-SH cells. Tumor cells were tested for viability, migration, and invasion potential. Results: In the viability assay, only neutrophils treated with BJcuL (24 h) and cultivated with SK-N-SH were cytotoxic. Migration of tumor cells decreased when incubated directly (p 0.001) or indirectly (p 0.005) with untreated neutrophils. When invasion potential was evaluated, neutrophils incubated with BJcuL reduced the total number of colonies of SK-N-SH cells following co-cultivation for 24 h (p 0.005). Treatment with CM resulted in decreased anchorage-free survival following 24 h of treatment (p 0.001). Conclusion: Data demonstrated that SK-N-SH cells maintain their migratory potential in the face of neutrophil modulation by BJcuL, but their invasive capacity was significantly reduced.

4.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;26: e20190073, 2020. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135150

RESUMO

Neuroblastoma is a pediatric tumor with a mortality rate of 40% in the most aggressive cases. Tumor microenvironment components as immune cells contribute to the tumor progression; thereby, the modulation of immune cells to a pro-inflammatory and antitumoral profile could potentialize the immunotherapy, a suggested approach for high-risk patients. Preview studies showed the antitumoral potential of BJcuL, a C- type lectin isolated from Bothrops jararacussu venom. It was able to induce immunomodulatory responses, promoting the rolling and adhesion of leukocytes and the activation of neutrophils. Methods: SK-N-SH cells were incubated with conditioned media (CM) obtained during the treatment of neutrophils with BJcuL and fMLP, a bacteria-derived peptide highly effective for activating neutrophil functions. Then we evaluated the effect of the same stimulation on the co-cultivation of neutrophils and SK-N-SH cells. Tumor cells were tested for viability, migration, and invasion potential. Results: In the viability assay, only neutrophils treated with BJcuL (24 h) and cultivated with SK-N-SH were cytotoxic. Migration of tumor cells decreased when incubated directly (p < 0.001) or indirectly (p < 0.005) with untreated neutrophils. When invasion potential was evaluated, neutrophils incubated with BJcuL reduced the total number of colonies of SK-N-SH cells following co-cultivation for 24 h (p < 0.005). Treatment with CM resulted in decreased anchorage-free survival following 24 h of treatment (p < 0.001). Conclusion: Data demonstrated that SK-N-SH cells maintain their migratory potential in the face of neutrophil modulation by BJcuL, but their invasive capacity was significantly reduced.(AU)


Assuntos
Animais , Peptídeos , Bothrops , Venenos de Crotalídeos/isolamento & purificação , Lectinas Tipo C/isolamento & purificação , Neuroblastoma , Neutrófilos , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA