Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(11): 1636-1647, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488375

RESUMO

Bispecific T cell engagers (BiTEs), a subset of bispecific antibodies (bsAbs), can promote a targeted cancer cell's death by bringing it close to a cytotoxic T cell. Checkpoint inhibitory T cell engagers (CiTEs) comprise a BiTE core with an added immunomodulatory protein, which serves to reverse cancer-cell immune-dampening strategies, improving efficacy. So far, protein engineering has been the main approach to generate bsAbs and CiTEs, but improved chemical methods for their generation have recently been developed. Homogeneous fragment-based bsAbs constructed from fragment antigen-binding regions (Fabs) can be generated using click chemistry. Here we describe a chemical method to generate biotin-functionalized three-protein conjugates, which include two CiTE molecules, one containing an anti-PD-1 Fab and the other containing an immunomodulatory enzyme, Salmonella typhimurium sialidase. The CiTEs' efficacy was shown to be superior to that of the simpler BiTE scaffold, with the sialidase-containing CiTE inducing substantially enhanced T cell-mediated cytotoxicity in vitro. The chemical method described here, more generally, enables the generation of multi-protein constructs with further biological applications.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Neuraminidase , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Engenharia de Proteínas
2.
Nanoscale ; 12(21): 11647-11658, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32436550

RESUMO

Antibody-targeted nanoparticles have shown exceptional promise as delivery vehicles for anticancer drugs, although manufacturability challenges have hampered clinical progress. These include the potential for uncontrolled and random antibody conjugation, resulting in masked or inactive paratopes and unwanted Fc domain interactions. To circumvent these issues, we show that the interchain disulfide of cetuximab F(ab) may be selectively re-bridged with a strained alkyne handle, to permit 'click' coupling to azide-capped nanoparticles in a highly uniform and oriented manner. When compared to conventional carbodiimide chemistry, this conjugation approach leads to the generation of nanoparticles with a higher surface loading of cetuximab F(ab) and with markedly improved ability to bind to the target epidermal growth factor receptor. Moreover, we show that entrapment of a camptothecin payload within these nanoparticles can enhance drug targeting to antigen-expressing pancreatic cancer cells, resulting in superior cytotoxicity versus the conventional nanoformulation. Collectively, this work highlights the critical need to develop refined methods for the construction of targeted nanoparticles that will accelerate their clinical translation through improved performance and manufacturability.


Assuntos
Anticorpos/metabolismo , Antígenos de Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/metabolismo , Neoplasias Pancreáticas/metabolismo , Anticorpos/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Camptotecina/química , Camptotecina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/química , Cetuximab/metabolismo , Receptores ErbB/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Nanopartículas/química , Propriedades de Superfície
3.
Org Biomol Chem ; 18(12): 2215-2218, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32150198

RESUMO

Due to their homogeneity, tuneable properties, low cost and ease of manufacture, thermally induced phase separation (TIPS) polymeric microparticles are emerging as an exciting class of injectable device for the treatment of damaged tissue or complex diseases, such as cancer. However, relatively little work has explored enhancing surface functionalisation of this system. Herein, we present the functionalisation of TIPS microparticles with both small molecules and an antibody fragment of Herceptin™, via a heterobifunctional pyridazinedione linker capable of participating in SPAAC "click" chemistry, and compare it to the traditional method of preparing active-targeted microparticle systems, that is, physisorption of antibodies to the microparticle surface. Antigen-binding assays demonstrated that functionalisation of microparticles with Herceptin Fab, via a pyridazinedione linker, provided an enhanced avidity to HER2+ when compared to traditional physisorption methods.

4.
Chem Commun (Camb) ; 55(53): 7671-7674, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204425

RESUMO

Herein we report the construction of a nanoparticle-based drug delivery system which targets a key regulator in tumour angiogenesis. We exploit a Variable New Antigen Receptor (VNAR) domain, conjugated using site-specific chemistry, to direct poly lactic acid-co-glycolic acid-polyethylene glycol (PLGA-PEG) nanoparticles to delta like canonical Notch ligand 4 (DLL4). The importance of site-specific chemistry is demonstrated.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Receptores de Antígenos/química , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA