Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511425

RESUMO

Cervi cornu extracts have been used in traditional medicine for the treatment of various disorders, including osteoporosis. However, since it is not easy to separate the active ingredients, limited research has been conducted on their functional properties. In this study, we extracted the low-molecular-weight (843 Da) collagen NP-2007 from cervi cornu by enzyme hydrolyzation to enhance absorption and evaluated the therapeutic effect in monosodium iodoacetate-induced rat osteoarthritis (OA) model. NP-2007 was orally administered at 50, 100, and 200 mg/kg for 21 days. We showed that the production of matrix metalloproteinase-2, -3, and -9, decreased after NP-2007 treatment. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and prostaglandin E2 were also reduced after treatment of NP-2007. Furthermore, the administration of NP-2007 resulted in effective preservation of both the synovial membrane and knee cartilage and significantly decreased the transformation of fibrous tissue. We verified that the treatment of NP-2007 significantly reduced the production of nitric oxide and pro-inflammatory cytokines including TNF-α, IL-1ß, and IL-6 in lipopolysaccharides-stimulated RAW 264.7 cells by regulation of the NF-kB and MAPK signaling pathways. This study indicates that NP-2007 can alleviate symptoms of osteoarthritis and can be applied as a novel treatment for OA treatment.


Assuntos
Cornus , Osteoartrite , Ratos , Animais , Metaloproteinase 2 da Matriz , Interleucina-6/farmacologia , Osteoartrite/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Colágeno/farmacologia , Condrócitos/metabolismo
2.
Nutrients ; 15(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447355

RESUMO

The purpose of this study was to investigate the effect that Glycine max hydrolyzed with enzymes from Bacillus velezensis KMU01 has on dextran-sulfate-sodium (DSS)-induced colitis in mice. Hydrolysis improves functional health through the bioconversion of raw materials and increase in intestinal absorption rate and antioxidants. Therefore, G. max was hydrolyzed in this study using a food-derived microorganism, and its anti-inflammatory effect was observed. Enzymatically hydrolyzed G. max (EHG) was orally administered once daily for four weeks before DSS treatment. Colitis was induced in mice through the consumption of 5% (w/v) DSS in drinking water for eight days. The results showed that EHG treatment significantly alleviated DSS-induced body weight loss and decreased the disease activity index and colon length. In addition, EHG markedly reduced tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 production, and increased that of IL-10. EHG improved DSS-induced histological changes and intestinal epithelial barrier integrity in mice. Moreover, we found that the abundance of 15 microorganisms changed significantly; that of Proteobacteria and Escherichia coli, which are upregulated in patients with Crohn's disease and ulcerative colitis, decreased after EHG treatment. These results suggest that EHG has a protective effect against DSS-induced colitis and is a potential candidate for colitis treatment.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Glycine max , Dextranos/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Anti-Inflamatórios/uso terapêutico , Sulfatos , Sódio/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
J Microbiol Biotechnol ; 33(4): 463-470, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36788475

RESUMO

This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.


Assuntos
Aloe , Antioxidantes , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Aloe/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fígado , Etanol/metabolismo , Glutationa/metabolismo , Extratos Vegetais/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
4.
Biomed Res Int ; 2022: 3865844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246974

RESUMO

Matriptases are cell surface proteolytic enzymes belonging to the type II transmembrane serine protease family that mediate inflammatory skin disorders and cancer progression. Matriptases may affect the development of periodontitis via protease-activated receptor-2 activity. However, the cellular mechanism by which matriptases are involved in periodontitis is unknown. In this study, we examined the antiperiodontitis effects of matriptase on Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS)-stimulated human gingival fibroblasts (HGFs). Matriptase small interfering RNA-transfected HGFs were treated with PG-LPS. The mRNA and protein levels of proinflammatory cytokines and matrix metalloproteinase 1 (MMP-1) were evaluated using the quantitative real-time polymerase chain reaction (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA), respectively. Western blot analyses were performed to measure the levels of Toll-like receptor 4 (TLR4)/interleukin-1 (IL-1) receptor-associated kinase (IRAK)/transforming growth factor ß-activated kinase 1 (TAK1), p65, and p50 in PG-LPS-stimulated HGFs. Matriptase downregulation inhibited LPS-induced proinflammatory cytokine expression, including the expression of IL-6, IL-8, tumor necrosis factor-α (TNF-α), and IL-Iß. Moreover, matriptase downregulation inhibited PG-LPS-stimulated MMP-1 expression. Additionally, we confirmed that the mechanism underlying the effects of matriptase downregulation involves the suppression of PG-LPS-induced IRAK1/TAK1 and NF-κB. These results suggest that downregulation of matriptase PG-LPS-induced MMP-1 and proinflammatory cytokine expression via TLR4-mediated IRAK1/TAK1 and NF-κB signaling pathways in HGFs.


Assuntos
Fibroblastos , Metaloproteinase 1 da Matriz , Periodontite , Serina Endopeptidases , Citocinas/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , NF-kappa B/metabolismo , Periodontite/genética , Periodontite/metabolismo , Porphyromonas gingivalis , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Ativados por Proteinase/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
BMB Rep ; 55(2): 87-91, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34903321

RESUMO

Aurora kinase is a family of serine/threonine kinases intimately associated with mitotic progression and the development of human cancers. Studies have shown that aurora kinases are important for the protein kinase C (PKC)-induced invasion of colon cancer cells. Recent studies have shown that aurora kinase A promotes distant metastasis by inducing epithelial-to-mesenchymal transition (EMT) in colon cancer cells. However, the role of aurora kinase A in colon cancer metastasis remains unclear. In this study, we investigated the effects of aurora kinase A on PKC-induced cell invasion, migration, and EMT in human SW480 colon cancer cells. Treatment with 12-O-tetradecanoylphorbol- 13-acetate (TPA) changed the expression levels of EMT markers, increasing α-SMA, vimentin, and MMP-9 expression and decreasing E-cadherin expression, with changes in cell morphology. TPA treatment induced EMT in a PKC-dependent manner. Moreover, the inhibition of aurora kinase A by siRNAs and inhibitors (reversine and VX-680) suppressed TPA-induced cell invasion, migration, and EMT in SW480 human colon cells. Inhibition of aurora kinase A blocked TPA-induced vimentin and MMP-9 expression, and decreased E-cadherin expression. Furthermore, the knockdown of aurora kinase A decreased the transcriptional activity of NF-κB and AP-1 in PKC-stimulated SW480 cells. These findings indicate that aurora kinase A induces migration and invasion by inducing EMT in SW480 colon cancer cells. To the best of our knowledge, this is the first study that showed aurora kinase A is a key molecule in PKC-induced metastasis in colon cancer cells. [BMB Reports 2022;55(2): 87-91].


Assuntos
Aurora Quinase A , Neoplasias do Colo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética
6.
Oncol Rep ; 46(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608498

RESUMO

Matriptases, members of the type II transmembrane serine protease family, are cell surface proteolytic enzymes that mediate tumor invasion and metastasis. Matriptase is highly expressed in breast cancer and is associated with poor patient outcome. However, the cellular mechanism by which matriptase mediates breast cancer invasion remains unknown. The present study aimed to determine the role of matriptase in the protein kinase C (PKC)­mediated metastasis of MCF­7 human breast cancer cells. Matriptase small interfering RNA­mediated knockdown significantly attenuated the 12­O­tetradecanoylphorbol­13­acetate (TPA)­induced invasiveness and migration of MCF­7 cells, and inhibited the activation of phospholipase C γ2 (PLCγ2)/PKC/MAPK signaling pathways. Matriptase­knockdown also suppressed the expression of MMP­9 and inhibited the activation of NF­κB/activator protein­1 in MCF­7 cells. Additionally, GB83 [an inhibitor of protease­activated receptor­2 (PAR­2)] inhibited PKC­mediated MMP­9 expression and metastatic ability in MCF­7 cells. Furthermore, downregulation of matriptase suppressed TPA­induced MMP­9 expression and invasiveness via PAR­2/PLCγ2/PKC/MAPK activation. These findings shed light on the mechanism underlying the role of matriptase in MCF­7 cell invasion and migration ability, and suggest that matriptase modulation could be a promising therapeutic strategy for preventing breast cancer metastasis.


Assuntos
Neoplasias da Mama/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica/prevenção & controle , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Receptor PAR-2/metabolismo , Serina Endopeptidases/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular , Regulação para Baixo , Humanos , Células MCF-7
7.
Oncol Rep ; 45(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760219

RESUMO

Bruton's agammaglobulinemia tyrosine kinase (BTK) is an important cytoplasmic tyrosine kinase involved in B­lymphocyte development, differentiation, and signaling. Activated protein kinase C (PKC), in turn, induces the activation of mitogen­activated protein kinase (MAPK) signaling, which promotes cell proliferation, viability, apoptosis, and metastasis. This effect is associated with nuclear factor­κB (NF­κB) activation, suggesting an anti­metastatic effect of BTK inhibitors on MCF­7 cells that leads to the downregulation of matrix metalloproteinase (MMP)­9 expression. However, the effect of BTK on breast cancer metastasis is unknown. In this study, the anti­metastatic activity of BTK inhibitors was examined in MCF­7 cells focusing on MMP­9 expression in 12­O­tetradecanoylphorbol­13­acetate (TPA)­stimulated MCF­7 cells. The expression and activity of MMP­9 in MCF­7 cells were investigated using quantitative polymerase chain reaction analysis, western blotting, and zymography. Cell invasion and migration were investigated using the Matrigel invasion and cell migration assays. BTK inhibitors [ibrutinib (10 µM), CNX­774 (10 µM)] significantly attenuated TPA­induced cell invasion and migration in MCF­7 cells and inhibited the activation of the phospholipase Cγ2/PKCß signaling pathways. In addition, small interfering RNA specific for BTK suppressed MMP­9 expression and cell metastasis. Collectively, results of the present study indicated that BTK suppressed TPA­induced MMP­9 expression and cell invasion/migration by activating the MAPK or IκB kinase/NF­κB/activator protein­1 pathway. The results clarify the mechanism of action of BTK in cancer cell metastasis by regulating MMP­9 expression in MCF­7 cells.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Neoplasias da Mama/patologia , Metaloproteinase 9 da Matriz/genética , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Fosfolipase C gama/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Acetato de Tetradecanoilforbol/toxicidade , Fator de Transcrição AP-1/metabolismo
8.
Arch Oral Biol ; 122: 105029, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387850

RESUMO

OBJECTIVE: The flower of chrysanthemum, used worldwide as a medicinal and edible product, has shown various bioactivities, such as anti-inflammatory, antioxidant, anti-tumorigenic, and hepatoprotective activities, as well as cardiovascular protection. However, the effect of Chrysanthemum morifolium Ramat. on the regulation of osteoclast differentiation has not yet been reported. In this study, we aimed to investigate the inhibitory effect of Chrysanthemum morifolium Ramat. water extract (CME) on RANKL-induced osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). STUDY DESIGN: Bone marrow-derived macrophages (BMMs) isolated from the C57BL/6 J mice. The viability of BMMs was detected with MTT assays. Inhibitory effects of CME on osteoclast differentiation and bone resorption was measured by TRAP staining and Pit assay. Osteoclast differentiation-associated gene expression were assessed by Real-time quantitative polymerase chain reaction. Intracellular signaling molecules was assessed by western blot. RESULTS: CME significantly inhibited osteoclast differentiation in BMMs without cytotoxicity, besides inhibiting MAPK/c-fos and PLCγ2/CREB activation. The inhibitory effects of CME on differentiation-related signaling molecules resulted in significant repression of NFATc1 expression, which is a key transcription factor in osteoclast differentiation, fusion, and activation. CONCLUSION: Our results confirmed the inhibition of RANKL-induced PLCγ2/CREB/c-fos/NFATc1 activation by CME during osteoclast differentiation. The findings collectively suggested CME as a traditional therapeutic agent for osteoporosis, RA, and periodontitis.


Assuntos
Reabsorção Óssea , Diferenciação Celular/efeitos dos fármacos , Chrysanthemum/química , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ligante RANK/metabolismo , Animais , Células da Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
9.
BMC Complement Altern Med ; 19(1): 322, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752816

RESUMO

BACKGROUND: Platycodon grandiflorum is a flowering plant that is used in traditional medicine for treating pulmonary and respiratory disorders. It exerts various pharmacological effects, including immunomodulatory and anti-cancer activities. The purpose of this study was to confirm the in vitro and in vivo immune-enhancing effects of P. grandiflorum extract (PGE) on splenocytes isolated from cyclophosphamide (CP)-induced immunosuppressed rats. METHODS: For in vitro analysis, splenocytes were treated with PGE at various doses along with CP. Cell viability was measured by a WST-1 assay, and NK cell activity and cytotoxic T lymphocyte (CTL) activity was also examined. In addition, immunoglobulin A (IgA), IgG, and cytokine levels were measured. For in vivo analysis, Sprague Dawley rats were treated with various doses of PGE along with CP. Complete blood count (CBC) was performed, and plasma levels of IgA, IgG, TNF-α, IFN-γ, IL-2, and IL-12 were quantified. Additionally, tissue damage was assessed through histological analyses of the thymus and spleen. RESULTS: PGE treatment enhanced cell viability and natural killer cell and cytotoxic T lymphocyte activity, and increased the production of CP-induced inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA) in splenocytes. In addition, in CP-treated rats, PGE treatment induced the recovery of white blood cell, neutrophil, and lymphocyte counts, along with mid-range absolute counts, and increased the serum levels of inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA). Moreover, PGE attenuated CP-induced spleen and thymic damage. CONCLUSIONS: Our results confirmed that PGE exerts an immune-enhancing effect both in vitro and in vivo, suggesting that PGE may have applications as a component of immunostimulatory agents or as an ingredient in functional foods.


Assuntos
Adjuvantes Imunológicos/farmacologia , Ciclofosfamida/efeitos adversos , Extratos Vegetais/farmacologia , Platycodon , Baço , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Tolerância Imunológica/efeitos dos fármacos , Terapia de Imunossupressão , Imunossupressores/efeitos adversos , Ratos , Baço/citologia , Baço/efeitos dos fármacos , Timo/efeitos dos fármacos
10.
Arch Oral Biol ; 108: 104530, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31470141

RESUMO

OBJECTIVE: Periodontitis is an inflammatory disease of the supporting tissue around teeth commonly caused by gram-negative bacterial infections. Interleukin (IL)-1ß, a cytokine involved in host immune and inflammatory responses, is known to induce the activation of various intracellular signaling pathways. One of these signaling mechanisms involves the regulation of gene expression by activation of transcription factors (AP-1 and NF-κB). These transcription factors are controlled by mitogen-activated protein kinases (MAPKs), which increase cytokine and matrix metalloproteinase (MMP) expression. We examined the preventive effects of reversine, a 2,6-disubstituted purine derivative, on cytokine and MMP-3 expression in human gingival fibroblasts (HGFs) stimulated with IL-lß. STUDY DESIGN: Western blot analyses were performed to verify the activities of MAPK, p65, p50, and c-Jun and the expression of MMPs in IL-1ß-stimulated HGFs. Cytokine and MMP-3 expression in IL-1ß-stimulated HGFs was measured by real-time quantitative polymerase chain reaction. RESULTS: Reversine decreased the IL-1ß-induced expression of proinflammatory cytokines (IL-6 and IL-8) and MMP-3 in HGFs. Furthermore, the mechanism underlying the effects of reversine involved the suppression of IL-1ß-stimulated MAPK activation and AP-1 activation. CONCLUSION: Reversine inhibits IL-1ß-induced MMP and cytokine expression via inhibition of MAPK/AP-1 activation and ROS generation. Therefore, we suggest that reversine may be an effective therapeutic candidate for preventing periodontitis.


Assuntos
Gengiva/metabolismo , Interleucina-6 , Interleucina-8/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Morfolinas , Purinas , Fibroblastos/metabolismo , Humanos , Interleucina-1beta , Interleucina-6/metabolismo , MAP Quinase Quinase 4/metabolismo , Morfolinas/farmacologia , NF-kappa B , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Purinas/farmacologia , Espécies Reativas de Oxigênio , Fator de Transcrição AP-1
11.
J Breast Cancer ; 21(1): 28-36, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29628981

RESUMO

PURPOSE: Peroxisome proliferator-activated receptor γ (PPARγ) is involved in the pathology of numerous diseases including atherosclerosis, diabetes, obesity, and cancer. Matrix metalloproteinases (MMPs) play a significant role in tissue remodeling related to various processes such as morphogenesis, angiogenesis, tissue repair, invasion, and metastasis. We investigated the effects of PPARγ on MMP expression and invasion in breast cancer cells. METHODS: MCF-7 cells were cultured and then cell viability was monitored in an MTT assay. Western blotting, gelatin zymography, real-time polymerase chain reaction, and luciferase assays were performed to investigate the effect of the synthetic PPARγ ligand troglitazone on MMP expression. Transcription factor DNA binding was analyzed by electrophoretic mobility shift assay. A Matrigel invasion assay was used to assess the effects of troglitazone on MCF-7 cells. RESULTS: Troglitazone did not affect MCF-7 cell viability. 12-O-tetradecanoylphorbol-13-acetate (TPA) induced MMP-9 expression and invasion in MCF-7 cell. However, these effects were decreased by troglitazone. TPA increased nuclear factor κB and activator protein-1 DNA binding, while troglitazone inhibited these effects. The selective PPARγ antagonist GW9662 reversed MMP-9 inhibition by troglitazone in TPA-treated MCF-7 cells. CONCLUSION: Troglitazone inhibited nuclear factor κB and activator protein-1-mediated MMP-9 expression and invasion of MCF-7 cells through a PPARγ-dependent mechanism.

12.
Mol Med Rep ; 17(6): 8397-8402, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29658601

RESUMO

Casein kinase 2 (CK2) is a serine/threonine protein kinase that has been considered to represent an important factor in mammary tumorigenesis. Increased expression of matrix metalloproteinase­9 (MMP­9) via nuclear factor­κB (NF­κB) activation has been demonstrated to promote breast cancer cell invasion. In the present study, the involvement of CK2 in protein kinase C (PKC) induced cell invasion in MCF­7 breast cancer cells was investigated as well as the underlying molecular mechanisms. The mRNA and protein levels of MMP­9 in MCF­7 cells were investigated using reverse transcription­quantitative polymerase chain reaction, western blot analyses and a zymography assay. Cell invasiveness was investigated using a Matrigel invasion assay, and it was revealed that small interfering RNA specific for CK2 suppressed PKC induced cell invasion by regulating MMP­9 expression via activation of the p38 kinase/c­Jun N­terminal kinase/NF­κB pathway. In addition, it was demonstrated that CK2 inhibitors [apigenin (20 µM), emodin (20 µM) or 2­dimethylamino­4,5,6,7­tetrabromo­1H­benzimidazole (2 µM)] suppressed PKC induced cell invasion and MMP­9 expression. The results of the present study suggested that CK2 is an important factor involved in the induction of MCF­7 breast cancer cell invasion by PKC. Therefore, CK2 may represent novel candidates for therapy intended to inhibit invasion in breast cancer.


Assuntos
Caseína Quinase II/genética , Inativação Gênica , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase C/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/genética , Expressão Gênica , Humanos , Células MCF-7 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Interferência de RNA
13.
J Breast Cancer ; 20(3): 234-239, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28970848

RESUMO

PURPOSE: Metastatic cancers spread from the primary site of origin to other parts of the body. Matrix metalloproteinase-9 (MMP-9) is essential in metastatic cancers owing to its major role in cancer cell invasion. Crotonis fructus (CF), the mature fruits of Croton tiglium L., have been used for the treatment of gastrointestinal disturbance in Asia. In this study, the effect of the ethanol extract of CF (CFE) on MMP-9 activity and the invasion of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells was examined. METHODS: The cell viability was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of MMP-9 was examined by Western blotting, zymography, and real-time polymerase chain reaction. An electrophoretic mobility gel shift assay was performed to detect activator protein-1 (AP-1) DNA binding activity and cell invasiveness was measured by an in vitro Matrigel invasion assay. RESULTS: CFE significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, CFE attenuated the TPA-induced activation of AP-1. CONCLUSION: The results indicated that the inhibitory effects of CFE against TPA-induced MMP-9 expression and MCF-7 cell invasion were dependent on the protein kinase C δ/p38/c-Jun N-terminal kinase/AP-1 pathway. Therefore, CFE could restrict breast cancer invasiveness owing to its ability to inhibit MMP-9 activity.

14.
Oncol Lett ; 14(3): 3594-3600, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28927117

RESUMO

Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.

15.
Oncol Lett ; 14(1): 441-446, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693189

RESUMO

Epigallocatechin gallate (EGCG), a major constituent of green tea, has potential as a treatment for a variety of diseases, including cancer. EGCG induces apoptosis and inhibits tumorigenesis through multiple signaling pathways in breast cancer cells. ß-catenin signaling modulators could be useful in the prevention and therapy of breast cancer. However, the precise anticancer effect of EGCG through the ß-catenin signaling pathway in breast cancer is unclear. The present study investigated the association between ß-catenin expression and clinicopathological factors of breast cancer patients, and the effect of EGCG on ß-catenin expression in breast cancer cells. ß-catenin expression was analyzed according to the clinicopathological factors of 74 patients with breast cancer. All patients were females diagnosed with invasive ductal carcinoma. Western blot analysis revealed that ß-catenin was expressed at higher levels in breast cancer tissue than in normal tissue. ß-catenin expression was associated with lymph node metastasis (P=0.04), tumor-node-metastasis stage (P=0.03) and estrogen receptor status (P<0.01). EGCG decreased MDA-MB-231 cell viability and significantly downregulated the expression of ß-catenin, phosphorylated Akt and cyclin D1. Remarkably, additive effects of LY294002 and wortmannin, two phosphatidylinositol-3 kinase inhibitors, were observed. The present results suggest that EGCG inhibits the growth of MDA-MB-231 cells through the inactivation of the ß-catenin signaling pathway. Based on these promising results, EGCG may be a potential treatment for triple negative breast cancer patients.

16.
J Cell Mol Med ; 21(11): 3113-3116, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28557373

RESUMO

The biological function of NADPH oxidase (NOX) is the generation of reactive oxygen species (ROS). ROS, primarily arising from oxidative cell metabolism, play a major role in both chronological ageing and photoageing. ROS in extrinsic and intrinsic skin ageing may be assumed to induce the expression of matrix metalloproteinases. NADPH oxidase is closely linked with phosphatidylinositol 3-OH kinase (PI3K) signalling. Protein kinase C (PKC), a downstream molecule of PI3K, is essential for superoxide generation by NADPH oxidase. However, the effect of PTEN and NOX4 in replicative-aged MMPs expression has not been determined. In this study, we confirmed that inhibition of the PI3K signalling pathway by PTEN gene transfer abolished the NOX-4 and MMP-1 expression. Also, NOX-4 down-expression of replicative-aged skin cells abolished the MMP-1 expression and ROS generation. These results suggest that increase of MMP-1 expression by replicative-induced ROS is related to the change in the PTEN and NOX expression.


Assuntos
Senescência Celular/genética , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/genética , NADPH Oxidase 4/genética , PTEN Fosfo-Hidrolase/genética , Espécies Reativas de Oxigênio/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Células Cultivadas , Derme/citologia , Derme/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais , Transfecção
17.
BMC Complement Altern Med ; 17(1): 164, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335757

RESUMO

BACKGROUND: Sophorae Flos (SF) is a composite of flowers and buds of Styphnolobium japonicum (L.) Schott and has been used in traditional Korean and Chinese medicine for the treatment of hemostasis and inflammation. Previous studies reported that SF possesses anti-obesity properties, as well as anti-allergic, anti-proliferative, and anti-inflammatory activities. However, the effect of SF in bone resorption has not been studies. In this study, we examined the potential of SF extract (SFE) to inhibit receptor activator of NF-κB ligand (RANKL) -induced osteoclast differentiation in cultured mouse-derived bone marrow macrophages (BMMs). METHODS: BMMs, that act as osteoclast precursors, were cultured with M-CSF (50 ng/ml) and RANKL (100 ng/ml) for 4 days to generate osteoclasts. Osteoclast differentiation was measured by tartrate-resistant acidic phosphatase (TRAP) staining and the TRAP solution assay. Osteoclast differentiation marker genes were analyzed by the quantitative real-time polymerase chain reaction analysis. RANKLs signaling pathways were confirmed through western blotting. RESULTS: SFE significantly decreased osteoclast differentiation in a dose-dependent manner. SFE inhibited RANKL-induced osteoclastogenesis by suppressing NF-κB activation. By contrast, SFE did not affect phospholipase C gamma 2 or subsequent cAMP response element binding activation. SFE inhibited the RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1). CONCLUSIONS: SFE attenuated the RANKL-mediated induction of NF-κB through inhibition of IκBα phosphorylation, which contributed to inhibiting of RANKL-induced osteoclast differentiation through downregulation of NFATc1.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ligante RANK/metabolismo , Sophora/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Flores/química , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Osteoclastos/citologia , Osteoclastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Oncol Lett ; 13(1): 243-249, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28123548

RESUMO

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix by matrix metalloproteinase (MMP)-9. The present study investigated the inhibitory effect of DHA on MMP-9 expression and cell invasion induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in the MCF-7 breast cancer cell line. DHA inhibited the TPA-induced activation of mitogen-activated protein kinase (MAPK) and the transcription of nuclear factor (NF)-κB, but did not inhibit the transcription of activator protein-1. DHA increased the activity of peroxisome proliferator-activated receptor (PPAR)-γ, an effect that was reversed by the application of the PPAR-γ antagonist GW9662. In addition, combined treatment with GW9662 and DHA increased NF-κB-related protein expression. These results indicate that DHA regulates MMP-9 expression and cell invasion via modulation of the MAPK signaling pathway and PPAR-γ/NF-κB activity. This suggests that DHA could be a potential therapeutic agent for the prevention of breast cancer metastasis.

19.
Oxid Med Cell Longev ; 2016: 6354261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003865

RESUMO

Reactive oxygen species (ROS) play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3) metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC) or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.


Assuntos
Senescência Celular , Fibroblastos/enzimologia , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento da Pele , Pele/enzimologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Ativação Enzimática , Fibroblastos/patologia , Humanos , Recém-Nascido , Masculino , NADPH Oxidases/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais , Pele/patologia , Fatores de Tempo , Transfecção
20.
Int J Mol Med ; 37(1): 108-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26717978

RESUMO

Metastatic cancers spread from their site of origin (the primary site) to other parts of the body. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is important in metastatic cancers as it plays a major role in cancer cell invasion. The present study examined the inhibitory effect of an ethanol extract of Peucedanum japonicum Thunb. (PJT) on MMP-9 expression and the invasion of MCF-7 breast cancer cells induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Western blot analysis, gelatin zymography, and reverse transcription-quantitative PCR revealed that PJT significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, PJT attenuated TPA-induced nuclear translocation and the transcriptional activation of nuclear factor (NF)-κB. The results indicated that the PJT-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involved the suppression of the PKCα/NF-κB pathway in MCF-7 cells. Thus, the inhibition of MMP-9 expression by PJT may have potential value as a therapy for restricting the invasiveness of breast cancer.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apiaceae/química , Neoplasias da Mama/tratamento farmacológico , NF-kappa B/metabolismo , Invasividade Neoplásica/prevenção & controle , Proteína Quinase C-alfa/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinógenos/toxicidade , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA